224
Views
1
CrossRef citations to date
0
Altmetric
Articles

A simplified two-mixture-fraction-based flamelet modelling and its validation on a non-premixed staged combustion system

ORCID Icon &
Pages 37-56 | Received 17 Apr 2022, Accepted 24 Oct 2022, Published online: 11 Nov 2022

References

  • O. Kurata, N. Iki, T. Matsunuma, T. Inoue, T. Tsujimura, H. Furutani, H. Kobayashi, and A. Hayakawa, Performances and emission characteristics of NH3–air and NH3CH4–air combustion gas-turbine power generations, Proc. Combustion Inst. 36 (2017), pp. 3351–3359.
  • E.C. Okafor, K.K.A. Somarathne, A. Hayakawa, T. Kudo, O. Kurata, N. Iki, and H. Kobayashi, Towards the development of an efficient low-NOx ammonia combustor for a micro gas turbine, Proc. Combustion Inst. 37 (2019), pp. 4597–4606.
  • H. Kobayashi, A. Hayakawa, K.K.A. Somarathne, and E.C. Okafor, Science and technology of ammonia combustion, Proc. Combustion Inst. 37 (2019), pp. 109–133.
  • N. Peters, Laminar diffusion flamelet models in non-premixed turbulent combustion, Prog. Energy. Combust. Sci. 10 (1984), pp. 319–339.
  • N. Peters, Turbulent Combustion, Cambridge University Press, Cambridge, 2000.
  • C.D. Pierce and P. Moin, Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion, J. Fluid. Mech. 504 (2004), pp. 73–97.
  • H. Pitsch, Large-eddy simulation of turbulent combustion, Annu. Rev. Fluid Mech. 38 (2006), pp. 453–482.
  • C. Hasse and N. Peters, A two mixture fraction flamelet model applied to split injections in a DI diesel engine, Proc. Combustion Inst. 30 (2005), pp. 2755–2762.
  • H. Barths, H. Pitsch, and N. Peters, 3D simulation of DI diesel combustion and pollutant formation using a two-component reference fuel, Oil Gas Sci. Technol. 54 (1999), pp. 233–244.
  • C. Felsch, M. Gauding, C. Hasse, S. Vogel, and N. Peters, An extended flamelet model for multiple injections in DI diesel engines, Proc. Combustion Inst. 32 (2009), pp. 2775–2783.
  • E.M. Doran, H. Pitsch, and D.J. Cook, A priori testing of a two-dimensional unsteady flamelet model for three-feed combustion systems, Proc. Combustion Inst. 34 (2013), pp. 1317–1324.
  • M. Ihme and Y.C. See, LES flamelet modeling of a three-stream MILD combustor: Analysis of flame sensitivity to scalar inflow conditions, Proc. Combustion Inst. 33 (2011), pp. 1309–1317.
  • B.B. Dally, A. Karpetis, and R. Barlow, Structure of turbulent non-premixed jet flames in a diluted hot coflow, Proc. Combustion Inst. 29 (2002), pp. 1147–1154.
  • M. Ihme, J. Zhang, G. He, and B. Dally, Large-eddy simulation of a jet-in-hot-coflow burner operating in the oxygen-diluted combustion regime, Flow, Turbulence Combust. 89 (2012), pp. 449–464.
  • L. Gomet, V. Robin, and A. Mura, A multiple-inlet mixture fraction model for nonpremixed combustion, Combust. Flame. 162 (2015), pp. 668–687.
  • J. Watanabe and K. Yamamoto, Flamelet model for pulverized coal combustion, Proc. Combustion Inst. 35 (2015), pp. 2315–2322.
  • M. Rieth, F. Proch, M. Rabaçal, B. Franchetti, F.C. Marincola, and A. Kempf, Flamelet LES of a semi-industrial pulverized coal furnace, Combust. Flame. 173 (2016), pp. 39–56.
  • J. Watanabe, T. Okazaki, K. Yamamoto, K. Kuramashi, and A. Baba, Large-eddy simulation of pulverized coal combustion using flamelet model, Proc. Combustion Inst. 36 (2017), pp. 2155–2163.
  • X. Wen, K. Luo, H. Jin, and J. Fan, Large eddy simulation of piloted pulverised coal combustion using extended flamelet/progress variable model, Combustion Theory Model. 21 (2017), pp. 925–953.
  • X. Wen, H. Wang, Y. Luo, K. Luo, and J. Fan, Evaluation of flamelet/progress variable model for laminar pulverized coal combustion, Phys. Fluids 29 (2017), p. 083607.
  • X. Wen, Y. Luo, H. Wang, K. Luo, H. Jin, and J. Fan, A three mixture fraction flamelet model for multi-stream laminar pulverized coal combustion, Proc. Combustion Inst. 37 (2019), pp. 2901–2910.
  • X. Wen, M. Rieth, A. Scholtissek, O.T. Stein, H. Wang, K. Luo, A. Kronenburg, J. Fan, and C. Hasse, A comprehensive study of flamelet tabulation methods for pulverized coal combustion in a turbulent mixing layer–part II: Strong heat losses and multi-mode combustion, Combust. Flame. 216 (2020), pp. 439–452.
  • B.A. Perry, M.E. Mueller, and A.R. Masri, A two mixture fraction flamelet model for large eddy simulation of turbulent flames with inhomogeneous inlets, Proc. Combustion Inst. 36 (2017), pp. 1767–1775.
  • B.A. Perry and M.E. Mueller, Effect of multiscalar subfilter PDF models in LES of turbulent flames with inhomogeneous inlets, Proc. Combustion Inst. 37 (2019), pp. 2287–2295.
  • M.E. Mueller, A computationally efficient turnkey approach to turbulent combustion modeling: From elusive fantasy to impending reality, in AIAA Scitech 2019 Forum. California. 2019, p. 0994.
  • P. Yu, H. Watanabe, W. Zhang, R. Kurose, and T. Kitagawa, Flamelet model for a three-feed non-premixed combustion system with a diluent stream: Analysis and validation of quasi-two-dimensional flamelet (Q2DF) models, Energy Fuels 33 (2019), pp. 4640–4650.
  • P. Yu, H. Watanabe, H. Pitsch, I. Yuri, H. Nishida, and T. Kitagawa, Analysis of a quasi-two-dimensional flamelet model on a three-feed non-premixed oxy-combustion burner, Flow, Turbulence Combustion 108 (2021), pp. 303–327.
  • M. Ihme and H. Pitsch, Modeling of radiation and nitric oxide formation in turbulent nonpremixed flames using a flamelet/progress variable formulation, Phys. Fluids 20 (2008), p. 055110.
  • M.E. Mueller and H. Pitsch, Large eddy simulation of soot evolution in an aircraft combustor, Phys. Fluids 25 (2013), p. 110812.
  • E.M. Doran, A Multi-Dimensional Flamelet Model for Ignition in Multi-Feed Combustion Systems, Stanford University, California, 2011.
  • M.E. Mueller, Physically-derived reduced-order manifold-based modeling for multi-modal turbulent combustion, Combust. Flame. 214 (2020), pp. 287–305.
  • A.G. Novoselov, B.A. Perry, and M.E. Mueller, Two-dimensional manifold equations for multi-modal turbulent combustion: Nonpremixed combustion limit and scalar dissipation rates, Combust. Flame. 231 (2021), p. 111475.
  • J. Floyd, A.M. Kempf, A. Kronenburg 1, and R. Ram, A simple model for the filtered density function for passive scalar combustion les, Combustion Theory Modell. 13 (2009), pp. 559–588.
  • S. Weise, D. Messig, B. Meyer, and C. Hasse, An abstraction layer for efficient memory management of tabulated chemistry and flamelet solutions, Combustion Theory Modell. 17 (2013), pp. 411–430.
  • M. Bode, N. Collier, F. Bisetti, and H. Pitsch, Adaptive chemistry lookup tables for combustion simulations using optimal b-spline interpolants, Combustion Theory Modell. 23 (2019), pp. 674–699.
  • T. Ding, T. Readshaw, S. Rigopoulos, and W. Jones, Machine learning tabulation of thermochemistry in turbulent combustion: An approach based on hybrid flamelet/random data and multiple multilayer perceptrons, Combust. Flame. 231 (2021), p. 111493.
  • M. Ihme, W.T. Chung, and A.A. Mishra, Combustion machine learning: Principles, progress and prospects, Prog. Energy. Combust. Sci. 91 (2022), p. 101010.
  • A.J. Fillo, P.E. Hamlington, and K.E. Niemeyer, Assessing diffusion model impacts on enstrophy and flame structure in turbulent lean premixed flames, Combustion Theory Modell. 26 (2022), pp. 712–727.
  • Y. Baba and R. Kurose, Analysis and flamelet modelling for spray combustion, J. Fluid. Mech. 612 (2008), pp. 45–79.
  • A. Fujita, H. Watanabe, R. Kurose, and S. Komori, Two-dimensional direct numerical simulation of spray flames-part 1: Effects of equivalence ratio, fuel droplet size and radiation, and validity of flamelet model, Fuel 104 (2013), pp. 515–525.
  • T. Kitano, T. Nakatani, R. Kurose, and S. Komori, Two-dimensional direct numerical simulation of spray flames–part 2: Effects of ambient pressure and lift, and validity of flamelet model, Fuel 104 (2013), pp. 526–535.
  • F.A. Williams, Combustion Theory, CRC Press, Florida, 2018.
  • J.F. MacArt and M.E. Mueller, Semi-implicit iterative methods for low mach number turbulent reacting flows: Operator splitting versus approximate factorization, J. Comput. Phys. 326 (2016), pp. 569–595.
  • J.F. MacArt, T. Grenga, and M.E. Mueller, Effects of combustion heat release on velocity and scalar statistics in turbulent premixed jet flames at low and high karlovitz numbers, Combust. Flame. 191 (2018), pp. 468–485.
  • G.S. Jiang and C.W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126 (1996), pp. 202–228.
  • O. Desjardins, G. Blanquart, G. Balarac, and H. Pitsch, High order conservative finite difference scheme for variable density low mach number turbulent flows, J. Comput. Phys. 227 (2008), pp. 7125–7159.
  • H. Pitsch and H. Steiner, Large-eddy simulation of a turbulent piloted methane/air diffusion flame (sandia flame D), Phys. Fluids 12 (2000), pp. 2541–2554.
  • I. Danaila and B. Boersma, Mode interaction in a forced homogeneous jet at low Reynolds numbers, in Proceedings of the Summer Program. California. 1998, pp. 141–158.
  • S.G. Davis, A.V. Joshi, H. Wang, and F. Egolfopoulos, An optimized kinetic model of H2/CO combustion, Proc. Combustion Inst. 30 (2005), pp. 1283–1292.
  • H. Pitsch, A C++ Computer Program for 0-D Combustion and 1-D Laminar Flame Calculation, RWTH Aachen, Aachen, 1998.
  • F. Proch and A. Kempf, Modeling heat loss effects in the large eddy simulation of a model gas turbine combustor with premixed flamelet generated manifolds, Proc. Combustion Inst. 35 (2015), pp. 3337–3345.
  • P.C. Ma, H. Wu, M. Ihme, and J.P. Hickey, Nonadiabatic flamelet formulation for predicting wall heat transfer in rocket engines, AIAA J. 56 (2018), pp. 2336–2349.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.