96
Views
0
CrossRef citations to date
0
Altmetric
Articles

Exploring the chemical kinetic effects on the direct detonation initiation in H2-O2-Ar mixtures

, , ORCID Icon, , ORCID Icon &
Pages 367-392 | Received 19 Jun 2023, Accepted 08 Jan 2024, Published online: 31 Jan 2024

References

  • F.K. Lu and E.M. Braun, Rotating detonation wave propulsion: experimental challenges, modeling, and engine concepts. J Propul Power 30 (2014), pp. 1125–1142.
  • M. Zhao, J.-M. Li, C.J. Teo, B.C. Khoo and H. Zhang, Effects of variable total pressures on instability and extinction of rotating detonation combustion. Flow Turbul Combust 104 (2020), pp. 261–290.
  • S. Miller, P. King, F. Schauer and J. Hoke, Ignition design for a rotating detonation engine, 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2013.
  • J.H. Lee, The Detonation Phenomenon, Cambridge University Press, New York, 2008.
  • F. Yang, T. Wang, X. Deng, J. Dang, Z. Huang, S. Hu, Y. Li and M. Ouyang, Review on hydrogen safety issues: Incident statistics, hydrogen diffusion, and detonation process. Int J Hydrogen Energy 46 (2021), pp. 31467–31488.
  • J. Lee and A. Higgins, Comments on criteria for direct initiation of detonation. Philos Trans R Soc London. Ser A: Math Phys Eng Sci 357 (1999), pp. 3503–3521.
  • J.H. Lee, R. Knystautas and N. Yoshikawa, Photochemical initiation of gaseous detonations. Acta Astronautica 5 (1980), pp. 971–982.
  • Y.B. Zeldovich, S.M. Kogarko and M.N. Simonov, An experimental investigation of spherical detonation of gases. Sov Phys-Tech Phys 1 (1956), pp. 1689–1713.
  • H. Matsui and J.H. Lee, On the measure of the relative detonation hazards of gaseous fuel-oxygen and air mixtures, Symposium (International) on Combustion, 1979.
  • J. Lee, R. Knystautas and C. Guirao, The link between cell size, critical tube diameter, initiation energy and detonability limits. Fuel-Air Explosions (1982), pp. 157–187.
  • A. Vasil'ev, V. Mitrofanov and M. Topchiyan, Detonation waves in gases. Combust Explos Shock Waves 23 (1988), pp. 605–623.
  • A. Vasil’ev, Y.A. Nikolaev and V.Y. Ul’yanitskii, Critical energy of initiation of a multifront detonation. Combust Explos Shock Waves 15 (1979), pp. 768–775.
  • A. Vasil’ev, Diffraction estimate of the critical energy for initiation of gaseous detonation. Combust Explos Shock Waves 34 (1998), pp. 433–437.
  • B. Zhang and C. Bai, Methods to predict the critical energy of direct detonation initiation in gaseous hydrocarbon fuels – an overview. Fuel 117 (2014), pp. 294–308.
  • J.H. Lee, Dynamic parameters of gaseous detonations. Annu Rev Fluid Mech 16 (1984), pp. 311–336.
  • R. Mével, D. Davidenko, F. Lafosse, N. Chaumeix, G. Dupré, C-É Paillard and J.E. Shepherd, Detonation in hydrogen–nitrous oxide–diluent mixtures: An experimental and numerical study. Combust Flame 162 (2015), pp. 1638–1649.
  • L. He and P. Clavin, On the direct initiation of gaseous detonations by an energy source. J Fluid Mech 277 (1994), pp. 227–248.
  • C.A. Eckett, J.J. Quirk and J.E. Shepherd, The role of unsteadiness in direct initiation of gaseous detonations. J Fluid Mech 421 (2000), pp. 147–183.
  • A.R. Kasimov and D.S. Stewart, Theory of Direct Initiation of Gaseous Detonations and Comparison with Experiment, TAM Rep. 1043., Department of Theoretical and Applied Mechanics, University of Illinois at Urbana-Champaign, Urbana, 2004.
  • D.S. Stewart and J.B. Bdzil, The shock dynamics of stable multidimensional detonation. Combust Flame 72 (1988), pp. 311–323.
  • Y. Liu, Q. Xie, Y. Chen, R. Mével and Z. Ren, Critical decay time model for direct detonation initiation energy in gaseous mixtures. J Propul Power 40 (2024), pp. 94–110.
  • M. Liberman, C. Wang, C. Qian and J. Liu, Influence of chemical kinetics on spontaneous waves and detonation initiation in highly reactive and low reactive mixtures. Combust Theor Model 23 (2019), pp. 467–495.
  • D.A. Jones, G. Kemister, E.S. Oran and M. Sichel, The influence of cellular structure on detonation transmission. Shock Waves 6 (1996), pp. 119–129.
  • H. Li, W. Han, J. Li and W. Fan, Influences of incoming flow on re-initiation of cellular detonations. Combust Flame 229 (2021), pp. 111376.
  • N. Semenoff, Chemical Kinetics and Chain Reactions, Oxford at the Clarendon Press, London, 1935.
  • B. Gray and C. Yang, On the unification of the thermal and chain theories of explosion limits. J Phys Chem 69 (1965), pp. 2747–2750.
  • J. Dold and A. Kapila, Comparison between shock initiations of detonation using thermally-sensitive and chain-branching chemical models. Combust Flame 85 (1991), pp. 185–194.
  • M. Short and J.J. Quirk, On the nonlinear stability and detonability limit of a detonation wave for a model three-step chain-branching reaction. J Fluid Mech 339 (1997), pp. 89–119.
  • Z. Liang and L. Bauwens, Cell structure and stability of detonations with a pressure-dependent chain-branching reaction rate model. Combust Theor Model 9 (2005), pp. 93–112.
  • Z. Liang, S. Browne, R. Deiterding and J. Shepherd, Detonation front structure and the competition for radicals. Proc Combust Inst 31 (2007), pp. 2445–2453.
  • M. Afrand, S. Farahat and M. Alamkar, The study of chain initiation effect on the direct initiation of detonation. Int J Ind Manuf Eng 6 (2012), pp. 2356–2361.
  • Q. Xie, Z. Xiao and Z. Ren, A spectral radius scaling semi-implicit iterative time stepping method for reactive flow simulations with detailed chemistry. J Comput Phys 368 (2018), pp. 47–68.
  • M. Burke, M. Chaos, Y. Ju, F. Dryer and S. Klippenstein, Comprehensive H2/O2 kinetic model for high-pressure combustion. Int J Chem Kinet 44 (2012), pp. 444–474.
  • C. Qi and Z. Chen, Effects of temperature perturbation on direct detonation initiation. Proc Combust Inst 36 (2017), pp. 2743–2751.
  • C. Qi and Z. Chen, Numerical simulation of direct detonation initiation in H2/O2/Ar mixtures with detailed chemistry, Proc. 25nd ICDERS, Leeds, UK, 2015, pp. 2–7.
  • Q. Xie, Y. Liu, Y. Chen and Z. Ren, Exploring the controlling mechanisms for gradient evolution in unsteady detonation flows. Phys Fluids 34 (2022), pp. 076102.
  • H. Shen and M. Parsani, The role of multidimensional instabilities in direct initiation of gaseous detonations in free space. J Fluid Mech 813 (2017), pp. R4.
  • W. Han, W. Kong, Y. Gao and C.K. Law, The role of global curvature on the structure and propagation of weakly unstable cylindrical detonations. J Fluid Mech 813 (2017), pp. 458–481.
  • G.J. Sharpe, Transverse waves in numerical simulations of cellular detonations. J Fluid Mech 447 (2001), pp. 31–51.
  • G.I. Taylor, The formation of a blast wave by a very intense explosion I. Theoretical discussion. Proc Royal Soc London. Ser A. Math Phys Sci 201 (1950), pp. 159–174.
  • M. Zhao, Z. Ren and H. Zhang, Pulsating detonative combustion in n-heptane/air mixtures under off-stoichiometric conditions. Combust Flame 226 (2021), pp. 285–301.
  • H. Ng, M. Radulescu, A. Higgins, N. Nikiforakis and J. Lee, Numerical investigation of the instability for one-dimensional Chapman–Jouguet detonations with chain-branching kinetics. Combust Theor Model 9 (2005), pp. 385–401.
  • V.P. Korobeinikov, Problems of Point Blast Theory, American Institute of Physics, New York, 1991.
  • T. Nagy and T. Turanyi, Uncertainty of Arrhenius parameters. Int J Chem Kinet 43 (2011), pp. 359–378.
  • D.A. Sheen and H. Wang, The method of uncertainty quantification and minimization using polynomial chaos expansions. Combust Flame 158 (2011), pp. 2358–2374.
  • P.G. Constantine, E. Dow and Q. Wang, Active subspace methods in theory and practice: applications to kriging surfaces. SIAM J Sci Comput 36 (2014), pp. A1500–A1524.
  • X. Su, W. Ji and Z. Ren, Uncertainty analysis in mechanism reduction via active subspace and transition state analyses. Combust Flame 227 (2021), pp. 135–146.
  • W. Ji, Z. Ren, Y. Marzouk and C.K. Law, Quantifying kinetic uncertainty in turbulent combustion simulations using active subspaces. Proc Combust Inst 37 (2019), pp. 2175–2182.
  • Q. Xie, Y. Liu, M. Yao, H. Zhou and Z. Ren, A fully coupled, fully implicit simulation method for unsteady flames using Jacobian approximation and clustering. Combust Flame 245 (2022), pp. 112362.
  • D.G. Goodwin, H.K. Moffat, I. Schoegl, R.L. Speth and B.W. Weber, Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. (2018). Available at https://www.cantera.org (2022). Version 2.6.0.
  • C.R.L. Bauwens and S.B. Dorofeev, Modeling detonation limits for arbitrary non-uniform concentration distributions in fuel–air mixtures. Combust Flame 221 (2020), pp. 338–345.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.