193
Views
1
CrossRef citations to date
0
Altmetric
Articles

The kinetics and warm flame chemistry associated with radiative extinction of spherical diffusion flames

, , , , &
Pages 441-458 | Received 22 Aug 2023, Accepted 18 Feb 2024, Published online: 17 Mar 2024

References

  • H. Guo, F. Liu and G.J. Smallwood, Soot and NO formation in counterflow ethylene/oxygen/nitrogen diffusion flames. Combust Theor Model 8 (2004), pp. 475–489.
  • B. Hitch, E.D. Lynch, Use of reduced, accurate ethylene combustion mechanisms for a hydrocarbon-fueled scramjet simulation, In: 45th AIAA/ASME/SAE/ASEE joint propulsion conference, Denver, Colorado, 2009.
  • A. Raj, I.D.C. Prada, A.A. Amer and S.H. Chung, A reaction mechanism for gasoline surrogate fuels for large polycyclic aromatic hydrocarbons. Combust Flame 159 (2012), pp. 500–515.
  • M.M. Kopp, N.S. Donato, E.L. Petersen, W.K. Metcalfe, S.M. Burke and H.J. Curran, Oxidation of ethylene–Air mixtures at elevated pressures, part 1: experimental results. J Propul Power 30 (2014), pp. 790–798.
  • N. Zettervall, C. Fureby and E.J.K. Nilsson, Small skeletal kinetic reaction mechanism for ethylene–Air combustion. Energy Fuels 31 (2017), pp. 14138–14149.
  • M. Yang, Z. Wan, N. Tan, C. Zhang, J. Wang and X. Li, An experimental and modeling study of ethylene–air combustion over a wide temperature range. Combust Flame 221 (2020), pp. 20–40.
  • H. Wang, N. Slavinskaya, A. Kanz, M. Auyelkhankyzy, Y. Gao and O. Haidn, A comprehensive kinetic modeling study of ethylene combustion with data uncertainty analysis. Fuel 299 (2021), pp. 120833.
  • S.D. Tse, D. Zhu, C.-J. Sung, Y. Ju and C.K. Law, Microgravity burner-generated spherical diffusion flames: experiment and computation. Combust Flame 125 (2001), pp. 1265–1278.
  • M.K. Chernovsky, A. Atreya and H.G. Im, Effect of CO2 diluent on fuel versus oxidizer side of spherical diffusion flames in microgravity. Proc Combust Inst 31 (2007), pp. 1005–1013.
  • K. Santa, B. Chao, P. Sunderland, D. Urban, D. Stocker and R. Axelbaum, Radiative extinction of gaseous spherical diffusion flames in microgravity. Combust Flame 151 (2007), pp. 665–675.
  • K.J. Santa, Z. Sun, B.H. Chao, P.B. Sunderland, R.L. Axelbaum, D.L. Urban and D.P. Stocker, Numerical and experimental observations of spherical diffusion flames. Combust Theor Model 11 (2007), pp. 639–652.
  • S. Tang, M.K. Chernovsky, H.G. Im and A. Atreya, A computational study of spherical diffusion flames in microgravity with gas radiation part I: model development and validation. Combust Flame 157 (2010), pp. 118–126.
  • S. Tang, H.G. Im and A. Atreya, A computational study of spherical diffusion flames in microgravity with gas radiation. part II: parametric studies of the diluent effects on flame extinction. Combust Flame 157 (2010), pp. 127–136.
  • P.H. Irace, H.J. Lee, K. Waddell, L. Tan, D.P. Stocker, P.B. Sunderland and R.L. Axelbaum, Observations of long duration microgravity spherical diffusion flames aboard the international space station. Combust Flame 229 (2021), pp. 111373.
  • P.H. Irace, K.A. Waddell, D. Constales, P.B. Sunderland and R.L. Axelbaum, Critical temperature and reactant mass flux for radiative extinction of ethylene microgravity spherical diffusion flames at 1 bar. Proc Combust Inst 39 (2023), pp. 1905–1913.
  • C.J. Sun, C.J. Sung, H. Wang and C.K. Law, On the structure of nonsooting counterflow ethylene and acetylene diffusion flames. Combust Flame 107 (1996), pp. 321–335.
  • S.A. Skeen, G. Yablonsky and R.L. Axelbaum, Characteristics of non-premixed oxygen-enhanced combustion: I. The presence of appreciable oxygen at the location of maximum temperature. Combust Flame 156 (2009), pp. 2145–2152.
  • Y. Ju, C.B. Reuter, O.R. Yehia, T.I. Farouk and S.H. Won, Dynamics of cool flames. Prog Energy Combust Sci 75 (2019), pp. 100787.
  • Y. Ju, Understanding cool flames and warm flames. Proc Combust Inst 38 (2021), pp. 83–119.
  • V. Nayagam, D.L. Dietrich, P.V. Ferkul, M.C. Hicks and F.A. Williams, Can cool flames support quasi-steady alkane droplet burning? Combust Flame 159 (2012), pp. 3583–3588.
  • T.I. Farouk and F.L. Dryer, Isolated n-heptane droplet combustion in microgravity: “cool flames” – Two-stage combustion. Combust Flame 161 (2014), pp. 565–581.
  • D.L. Dietrich, R. Calabria, P. Massoli, V. Nayagam and F.A. Williams, Experimental observations of the Low-temperature burning of decane/hexanol droplets in microgravity. Combust Sci Technol 189 (2017), pp. 520–554.
  • T.I. Farouk, D. Dietrich and F.L. Dryer, Three stage cool flame droplet burning behavior of n-alkane droplets at elevated pressure conditions: Hot, warm and cool flame. Proc Combust Inst 37 (2019), pp. 3353–3361.
  • M. Kim, K.A. Waddell, P.B. Sunderland, V. Nayagam, D.P. Stocker, D.L. Dietrich, Y. Ju, F.A. Williams, P. Irace and R. L, Spherical gas-fueled cool diffusion flames. Proc Combust Inst 39 (2023), pp. 1647–1656.
  • S.H. Won, B. Jiang, P. Diévart, C.H. Sohn and Y. Ju, Self-sustaining n -heptane cool diffusion flames activated by ozone. Proc Combust Inst 35 (2015), pp. 881–888.
  • C.B. Reuter, M. Lee, S.H. Won and Y. Ju, Study of the low-temperature reactivity of large n-alkanes through cool diffusion flame extinction. Combust Flame 179 (2017), pp. 23–32.
  • K.A. Waddell, H.J. Lee, V. Nayagam, R.L. Axelbaum and P.B. Sunderland, Cool diffusion flames in a stably stratified stagnation flow. Combust Flame 254 (2023), pp. 112852.
  • O.R. Yehia, C.B. Reuter and Y. Ju, Low-temperature multistage warm diffusion flames. Combust Flame 195 (2018), pp. 63–74.
  • O.R. Yehia, C.B. Reuter and Y. Ju, On the chemical characteristics and dynamics of n-alkane low-temperature multistage diffusion flames. Proc Combust Inst 37 (2019), pp. 1717–1724.
  • V.R. Lecoustre, Numerical investigations of gaseous spherical diffusion flames, PhD dissertation, University of Maryland, 2009.
  • V.R. Lecoustre, P.B. Sunderland, B.H. Chao and R.L. Axelbaum, Numerical investigation of spherical diffusion flames at their sooting limits. Combust Flame 159 (2012), pp. 194–199.
  • V.R. Lecoustre, P.B. Sunderland, B.H. Chao and R.L. Axelbaum, Modeled quenching limits of spherical hydrogen diffusion flames. Proc Combust Inst 34 (2013), pp. 887–894.
  • R.J. Kee, J.F. Grcar, M.D. Smooke, J.A. Miller, E. Meeks, Premix: A FORTRAN Program for Modeling Steady Laminar One-Dimensional Premixed Flames, 1987.
  • I.E. Gordon, L.S. Rothman, R.J. Hargreaves, R. Hashemi, E.V. Karlovets, F.M. Skinner, E.K. Conway, C. Hill, R.V. Kochanov, Y. Tan, P. Wcisło, A.A. Finenko, K. Nelson, P.F. Bernath, M. Birk, V. Boudon, A. Campargue, K.V. Chance, A. Coustenis, B.J. Drouin, et al., J Quant Spectrosc Radiat Transfer 277 (2022), pp. 107949.
  • Chemical-Kinetic Mechanisms for Combustion Applications, San Diego Mechanism, http://combustion.ucsd.edu.
  • J.C. Prince and F.A. Williams, Short chemical-kinetic mechanisms for low-temperature ignition of propane and ethane. Combust Flame 159 (2012), pp. 2336–2344.
  • J.C. Prince, C. Treviño and F.A. Williams, A reduced reaction mechanism for the combustion of n-butane. Combust Flame 175 (2017), pp. 27–33.
  • D. Constales, G.S. Yablonsky and G.B. Marin, The C-matrix: augmentation and reduction in the analysis of chemical composition and structure. Chem Eng Sci 110 (2014), pp. 164–168.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.