107
Views
0
CrossRef citations to date
0
Altmetric
Articles

Verification and validation of detonation-shock-dynamics relations for explosives described by general equation of state and chemical reaction models

Pages 554-578 | Received 17 May 2023, Accepted 19 Mar 2024, Published online: 03 May 2024

References

  • C.A. Handley, B.D. Lambourn, N.J. Whitworth, H.R. James, and W.J. Belfield, Understanding the shock and detonation response of high explosives at the continuum and meso scales, Appl. Phys. Rev.5(1) (2018), p. 011303. https://doi.org/10.1063/1.5005997.
  • B.L. Wescott, D.S. Stewart, and W.C. Davis, Equation of state and reaction rate for condensed-phase explosives, J. Appl. Phys. 98(5) (2005), p. 053514. https://doi.org/10.1063/1.2035310.
  • T.D. Aslam, Shock temperature dependent rate law for plastic bonded explosives, J. Appl. Phys.123(14) (2018), p. 145901. https://doi.org/10.1063/1.5020172.
  • R. Menikoff and M.S. Shaw, Reactive burn models and ignition & growth concept, in EPJ Web of Conferences, No. 00003 in 10, 2010, pp. 1–9. https://doi.org/10.1051/epjconf/20101000003.
  • R. Menikoff and M.S. Shaw, The SURF model and the curvature effect for PBX 9502, Combust. Theory Model. 16(6) (2012), pp. 1140–1169. https://doi.org/10.1080/13647830.2012.713994.
  • T. Aslam, J.B. Bdzil, and L. Hill, Extensions to DSD theory: Analysis of PBX 9502 rate stick data, in 11th International Detonation Symposium, Snowmass, CO, 1998.
  • J.B. Bdzil, Steady-state two-dimensional detonation, J. Fluid. Mech. 108 (1981), pp. 195–226. https://doi.org/10.1017/S0022112081002085.
  • D.S. Stewart and J.B. Bdzil, The shock dynamics of stable multidimensional detonation, Combust. Flame. 72(3) (1988), pp. 311–323. https://doi.org/10.1016/0010-2180(88)90130-7.
  • D.S. Stewart and J.B. Bdzil, Examples of detonation shock dynamics for detonation wave spread applications, in Proceedings of the 9th Symposium (International) on Detonation, Portland, OR, 1989.
  • T.D. Aslam and M. Short, Detonation shock dynamics overview and calibration, LA-UR 1326358, Los Alamos National Laboratory, 2013.
  • J.B. Bdzil, W. Fickett, and D.S. Stewart, Detonation shock dynanamics: A new approach to modeling milti-dimensional detonation waves, in Proceedings of the 9th Symposium (International) on Detonation, Portland, OR, 1989.
  • T.D. Aslam, Detonation shock dynamics calibration of PBX 9501, in Shock Compression of Condensed Matter, M. Elert, M. D. Furnish, R. Chau, N. Holmes and J. Nguyen, eds., Vol. CP955, 2007, pp. 813–816. https://doi.org/10.1063/1.2833248.
  • D.S. Stewart and J. Yao, The normal detonation shock velocity–curvature relationship for materials with nonideal equation of state and multiple turning points, Combust. Flame. 113(1–2) (1998), pp. 224–235. https://doi.org/10.1016/S0010-2180(97)00170-3
  • R. Menikoff, K.S. Lackner, and B.G. Bukiet, Modeling flows with curved detonation waves, Combust. Flame. 104(3) (1996), pp. 219–240. https://doi.org/10.1016/0010-2180(95)00106-9.
  • J. Yao and D. Stewart, On the normal detonation shock velocity-curvature relationship for materials with large activation energy, Combust. Flame. 100(4) (1995), pp. 519–528. https://doi.org/10.1016/0010-2180(94)00144-H.
  • D.S. Stewart, J. Yao, and W.C. Davis, Computation of shock acceleration effects on detonation shock dynamics for explosives described by general equation of state, Proc. Combust. Inst. 28(1) (2000), pp. 619–628. https://doi.org/10.1016/S0082-0784(00)80262-3.
  • B. Asay, J. Bdzil, J. Foster, A. Hernandez, D. Lambert, and D.S. Stewart, A multi-component detonation reaction zone model for blast explosives, in 16th International Detonation Symposium, Cambridge, MD, 2018.
  • J.M. Powers, Combustion Thermodynamics and Dynamics, Cambridge University Press, 2016.
  • J. Yao and D.S. Stewart, On the dynamics of multi-dimensional detonation, J. Fluid. Mech. 309 (1996), pp. 225–275. https://doi.org/10.1017/S0022112096001620.
  • T.D. Aslam, Investigations on detonation shock dynamics, Ph.D. thesis, University of Illinois Urbana-Champaign, 1996.
  • T.D. Aslam and D.S. Stewart, Detonation shock dynamics and comparisons with direct numerical simulation, Combust. Theory Model. 3 (1999), pp. 77–101. https://doi.org/10.1088/1364-7830/3/1/005.
  • C.M. Romick and T.D. Aslam, High-order shock-fitted detonation propagation in high explosives, J. Comput. Phys. 332 (2017), pp. 210–235. https://doi.org/10.1016/j.jcp.2016.11.049.
  • W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipies, the Art of Scientific Computing (FORTRAN), Cambridge University Press, Cambridge, UK, 1989.
  • S. Andrews and T. Aslam, On the direct construction of the steady traveling solution to high explosive sandwich, cylinder and aquarium test via a streamline finite volume approximation, J. Comput. Phys.395 (2019), pp. 653–670. https://doi.org/10.1016/j.jcp.2019.06.029.
  • W. Fickett and W.C. Davis, Detonation, University of California Press, 1979.
  • D.S. Stewart, Lectures on detonation physics: Introduction to the theory of detonation shock dynamics, Tech. Rep. ULU-ENG-95-6019, University of Illinois at Urbana-Champaign, 1994.
  • W.L. Oberkampf and C.J. Roy, Verification and Validation in Scientific Computing, Cambridge University Press, Cambridge, UK, 2012.
  • T.D. Aslam, M.A. Price, C. Ticknor, J.D. Coe, J.A. Leiding, and M.A. Zocher, AWSD callibration for the HMX based explosive PBX 9501, in AIP Conference Proceedings, Vol. 2272, 2020, p. 030001. https://doi.org/10.1063/12.0000891.
  • C. Chiquete, M. Short, S.J. Voelkel, E.K. Anderson, and S.I. Jackson, Detonation shock dynamics modeling and calibration of the hmx-based conventional high explosive pbx 9501 with application to the two-dimensional circular arc geometry, Combust. Flame. 222 (2020), pp. 213–232. https://doi.org/10.1016/j.combustflame.2020.08.030.
  • L. Hill, J.B. Bdzil, and T.D. Aslam, Front curvature rate stick measurements and detonation shock dynamics callibration for pbx 9502 over a wide temperature range, in 11th International Symposium on Detonation, No. ONR333000-5, Snowmass Co, 1998.
  • A.W. Campbell, Diameter effect and failure diameter of a tatb-based explosive, Propellants Explos. Pyrotech. 9(6) (1984), pp. 183–187. https://doi.org/10.1002/prep.19840090602.
  • L.G. Hill, J.B. Bdzil, W.C. Davis, and R.R. Critchfield, PBX 9502 front curvature rate stick data: Repeatability and the effects of temperature and material variations, in Thirteenth International Detonation Symposium, Norfolk Va, 2006, pp. 331–341.
  • C.R. Harris, K.J. Millman, S.J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N.J. Smith, R. Kern, M. Picus, S. Hoyer, M.H. van Kerkwijk, M. Brett, A. Haldane, J. Fernández del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T.E. Oliphant, Array programming with NumPy, Nature585 (2020), pp. 357–362. https://doi.org/10.1038/s41586-020-2649-2.
  • J.D. Hunter, Matplotlib: A 2D graphics environment, Comput. Sci. Eng. 9 (2007), pp. 21–29. https://doi.org/10.1109/MCSE.2007.55.
  • P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S.J. van der Walt, M. Brett, J. Wilson, K.J. Millman, N. Mayorov, A.R.J. Nelson, E. Jones, R. Kern, E. Larson, C.J. Carey, İ. Polat, Y. Feng, E.W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E.A. Quintero, C.R. Harris, A.M. Archibald, A.H. Ribeiro, F. Pedregosa, and P. van Mulbregt, SciPy 1.0 contributors, SciPy 1.0: Fundamental algorithms for scientific computing in Python, Nat. Methods 17 (2020), pp. 261–272. https://doi.org/10.1038/s41592-019-0686-2.
  • S.A. Andrews and T.D. Aslam, Verification of a specialized hydrodynamic simulation code for modeling deflagration and detonation of high explosives, J. Verif. Valid. Uncertain. Quantif. 7(1) (2022), p. 011006. https://doi.org/10.1115/1.4053340.
  • A.E. Mattsson, Short introduction to relations between thermodynamic quantities, SAND 2016-2112, Sandia National Laboratories, Albuquerque, 2016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.