282
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Harvest time optimization considering the stocking density and heterogeneity of sizes in the culture of white shrimp in freshwater

, , , &

References

  • Araneda, M. (2010). Análisis de la producción intensiva del camarón blanco Penaeus vannamei en agua dulce: Un enfoque bioeconómico (PhD Thesis). Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Yucatán, México (in Spanish).
  • Araneda, M. E., Hernández, J. M., & Gasca-Leyva, E. (2011). Optimal harvesting time of farmed aquatic populations with nonlinear size-heterogeneous growth. Natural Resource Modeling, 24(4), 477–513. doi:10.1111/j.1939-7445.2011.00099.x
  • Araneda, M. E., Hernández, J. M., Gasca-Leyva, E., & Vela, M. A. (2013). Growth modelling including size heterogeneity: Application to the intensive culture of white shrimp (P. vannamei) in freshwater. Aquaculture Engineering, 56, 1–12. doi:10.1016/j.aquaeng.2013.03.003
  • Araneda, M., Pérez, E. P., & Gasca-Leyva, E. (2008). White shrimp Penaeus vannamei culture in freshwater at three densities: Condition state based on length and weight. Aquaculture, 283(1), 13–18. doi:10.1016/j.aquaculture.2008.06.030
  • Arnason, R. (1992). Optimal feeding schedules and harvesting time in aquaculture. Marine Resource Economics, 7, 15–35. doi:10.1086/mre.7.1.42629021
  • Arnold, S. J., Sellars, M. J., Crocos, P. J., & Coman, G. J. (2006). An evaluation of stocking density on the intensive production of juvenile brown tiger shrimp (Penaeus esculentus). Aquaculture, 256, 174–179. doi:10.1016/j.aquaculture.2006.01.032
  • Barbosa, J. M., Brugiolo, S. S., Carolsfeld, J., & Leitão, S. S. (2006). Heterogeneous growth in fingerlings of the Nile tilapia Oreochromis niloticus: Effects of density and initial size variability. Brazilian Journal of Biology, 66, 537–541. doi:10.1590/s1519-69842006000300020
  • Barky, A., Harpaz, S., Hulata, G., & Karplus, I. (2000). Effects of larger fish and size grading on growth and size variation in fingerling silver perch. Aquaculture International, 8, 391–401.
  • Bjorndal, T. (1988). Optimal harvesting of farmed fish. Marine Resource Economics, 5, 139–159.
  • Chang, F. (2004). Stochastic optimization in continuous time (p. 344). UK: Cambridge University Press. New York, USA.
  • Colt, J. E., & Tchobanoglous, G. (1981). Design of operation systems for aquaculture. In L. J. Allen & E. Kinney (Eds.), Proceedings of the Bio-Engineering Symposium for Fish Culture (pp. 138–148). American Fisheries Society, Bethesda, MD.
  • Davis, D. A. & Arnold, C. R. (1998). The design, management, and production of recirculating raceway system for the production of marine shrimp. Aquaculture Engineering, 17, 193–211. doi:10.1016/s0144-8609(98)00015-6
  • Dey, M. M. (2000). Analysis of demand for fish in Asia. Aquaculture Economics & Management, 4, 65–84.
  • Domínguez-May, R., Hernández, J. M., Gasca-Leyva, E., & Poot-López, G. R. (2011). Effect of ration and size heterogeneity on harvest time: Tilapia culture in Yucatan, Mexico. Aquaculture Economics & Management, 15(4), 278–301. doi:10.1080/13657305.2011.624575
  • Esmaeili, A. (2005). Optimal feeding for shrimp culture in the south of Iran. North American Journal Aquaculture, 67, 155–159. doi:10.1577/a04-002.1
  • FAO (2014). The state of world fisheries and aquaculture opportunities and challenges (p. 253). Rome: Food and Agriculture Organization of the United Nations.
  • FAO (2016). The state of world fisheries and aquaculture 2016. Contributing to food security and nutrition for all (p. 200). Rome: Food and Agriculture Organization of the United Nations (UN FAO).
  • Forsberg, I. O. (1996). Optimal stocking and harvest of size-structure farmed fish: A multi-period linear programming approach. Mathematics and Computers in Simulation, 42, 299–305. doi:10.1016/0378-4754(95)00132-8
  • Forsberg, I. O. (1999). Optimal harvesting of farmed Atlantic salmon at two cohort management strategies and different harvest operation restrictions. Aquaculture Economics Management, 3, 143–158. doi:10.1046/j.1365-7313.1999.00044.x
  • Gadagkar, S. (1997). Social behaviour and growth rate variation in cultivated tilapia (Oreochromis niloticus) (PhD Thesis). Dalhousie University Halifax, Nova Scotia, pp. 193.
  • Gasca-Leyva, E., Hernández, J. M., & Veliov, V. M. (2008) Optimal harvesting time in size-heterogeneous population. Ecological Modeling, 210(1), 161–168. doi:10.1016/j.ecolmodel.2007.07.018
  • Gurney, S. C., Tyldesley, G., Wood, S. N., Bacon, P. J., Heath, M. R., Youngson, A., & Ibbotson, A. (2007). Modelling length-at-age variability under irreversible growth. Canadian Journal of Fisheries and Aquatic Sciences, 64, 638–653. doi:10.1139/f07-039
  • Harán, N., Mallo, J., & Fenucci, J. (2004). Density influence on growth and development of the petasma in juvenile shrimps Pleocticus muelleri (Decapada, Penaeoidea). Investigaciones Marinas, 32(1), 11–18.
  • Hatziathanasiou, A., Paspatis, M., Houbart, M., Kestemont, P., Stefanakis, S., & Kentouri, M. (2002). Survival, growth and feeding in early life stages of European sea bass (Dicentrarchus labrax) intensively cultured under deferent stocking densities. Aquaculture, 205, 89–102. doi:10.1016/s0044-8486(01)00672-x
  • Hean, R. L. (1994). An optimal management model for intensive aquaculture-an application in Atlantic Salmon. Australian Journal of Agriculture Economics, 38, 31–47. doi:10.1111/j.1467-8489.1994.tb00718.x
  • Heaps, T. (1995). Density dependent growth and the culling of farmed fish. Marine Resource Economics, 10, 285–298. doi:10.1086/mre.10.3.42629592
  • Hernandez, J. M., León-Santana, M., & León, C. J. (2007). The role of the water temperature in the optimal management of marine aquaculture. European Journal of Operational Research, 181(12), 872–886. doi:10.1016/j.ejor.2006.06.021
  • Hernández-Llamas, A., Gonzalez-Becerril, A., Hernández-Vazquez, S., & Escutia-Zuñiga, S. (2004). Bioeconomic analysis of intensive production of the blue shrimp Litopenaeus stylirostris (Stimpson). Aquaculture Research, 35, 103–111. doi:10.1111/j.1365-2109.2004.00980.x
  • HLPE. (2014). La pesca y la acuicultura sostenibles para la seguridad alimentaria y la nutrición (p. 132). Roma: Un informe del Grupo de alto nivel de expertos en seguridad alimentaria y nutrición del Comité de Seguridad Alimentaria Mundial.
  • Huang, W. B. & Chiu, T. S. (1997). Effects of stocking density on survival, growth, size variation, and production of Tilapia fry. Aquaculture Research, 28, 165–173. doi:10.1111/j.1365-2109.1997.tb01029.x
  • Huguenin, J. E. & Colt, J. (2002). Design and Operating Guide for Aquaculture Seawater Systems. Elsevier, Amsterdam, p. 264.
  • Huss, M., Persson, L., & Byström, P. (2007). The origin and development of individual size variation in early pelagic stages of fish. Oecologia, 153, 57–67. doi:10.1007/s00442-007-0719-x
  • Klinger, D. & Naylor, R. (2012). Searching for solutions in aquaculture: Charting a sustainable course. Annual Review of Environmental and Resources, 37, 247–76. doi:10.1146/annurev-environ-021111-161531
  • Kooijman, S. A. (2000). Dynamic energy and mass budgets in biological systems (p. 444). Great Britain: Cambridge University Press.
  • León-Santana, M. & Hernández, J. M. (2008). Optimum management and environmental protection in the aquaculture industry. Ecological Economics, 64(4), 849–857. doi:10.1016/j.ecolecon.2007.05.006
  • Leung, P. & Engle, C. (2006). Shrimp culture: Economics, market, and trade (p. 335). Iowa: Blackwell Publishing.
  • Liao, I. C. & Chien, Y. H. (2011). The pacific white shrimp, Litopenaeus vannamei, in Asia: The world’s most widely cultured alien crustacean. In B. S. Galil, P. F. Clark, & J. T. Carlton (Eds.), In the wrong place - alien marine crustaceans: Distribution, biology and impacts (pp. 489–519). Netherlands: Springer, Dordrecht.
  • Llorente, I. & Luna, L. (2014). Economic optimisation in seabream (Sparus aurata) aquaculture production using a particle swarm optimisation algorithm. Aquaculture International, 22(6), 1837–1849. doi:10.1007/s10499-014-9786-2
  • Llorente, I. & Luna, L. (2016). Bioeconomic modelling in aquaculture: An overview of the literature. Aquaculture International, 24(4), 931–948. doi:10.1007/s10499-015-9962-z
  • Mena-Herrera, A., Gutierrez-Corona, C., Linan-Cabello, M., & Sumano-Lopez, H. (2006). Effects of stocking densities on growth of the pacific white shrimp (Litopenaeus vannamei) in earthen ponds. Israeli Journal of Aquaculture, 58(3), 205–213.
  • Menz, A. & Blake, B. F. (1980). Experiments on the growth of Penaeus vannamei Boone. Journal of Experimental Marine Biology and Ecology, 48(2), 99–111. doi:10.1016/0022-0981(80)90010-6
  • Mistiaen, J. & Strand, I. (1999). Optimal feeding and harvest time for fish with weight-dependent prices. Marine Resource Economics, 13, 231–246. doi:10.1086/mre.13.4.42629239
  • Ottinger, M., Clauss, K., & Kuenzer, C. (2016). Aquaculture: Relevance, distribution, impacts and spatial assessments – A review. Ocean and Coastal Management, 119, 244–266. doi:10.1016/j.ocecoaman.2015.10.015
  • Palada de Vera, M. S. & Eknath, A. E. (1993). Predictability of individual growth rates in Tilapia. Aquaculture, 111, 147–158. doi:10.1016/0044-8486(93)90033-u
  • Peacor, S. D., Bence, R. J., & Pfister, C. A. (2007). The effect of size-dependent growth and environmental factors on animal size variability. Theorical Population Biology, 71, 80–94. doi:10.1016/j.tpb.2006.08.005
  • Peacor, S. D. & Pfister, C. A. (2006) Experimental and model analyses of the effects of competition on individual size variation in wood frog (Rana sylvatica) tadpoles. Journal Animal Ecology, 75(4), 990–999. doi:10.1111/j.1365-2656.2006.01119.x
  • Pfister, C. A. & Stevens, F. R. (2002). The genesis of size variability in plants and animals. Ecology, 83, 59–72. doi:10.2307/2680121
  • Posadas, B. & Hanson, T. (2006). Economics of integrating nursery systems into indoor biosecure recirculating saltwater shrimp grow-out systems. In P. S. Leung & C. Engle (Eds.), Shrimp culture: Economics, market and trade (pp. 279–289). Iowa: Blackwell Publishing.
  • Power, M. (1993). The predictive validation of ecological and environmental models. Ecological Modeling, 68, 33–50. doi:10.1016/0304-3800(93)90106-3
  • Roy, L. A., Davis, D. A., Saoud, I. P., Boyd, C. A., Pine, H. J., & Boyd, C. E. (2010). Shrimp culture in inland low salinity waters. Reviews in Aquaculture, 2(4), 191–208. doi:10.1111/j.1753-5131.2010.01036.x
  • Ruiz-Velazco, J.M. J. (2011). Modelo bioeconómico para el análisis del riesgo del cultivo intensivo de camarón blanco (Litopenaeus vannamei) (PhD Thesis). Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, La Paz, BCS (in Spanish).
  • Saiti, F., Jamu, D. M., Chisala, B., & Kambewa, P. (2007). Simulation of optimal harvesting strategies for small-scale mixed-sex tilapia (Oreochoromis shiranus Boulenger 1896) ponds using a bio-economic model. Aquaculture Research, 38, 340–350. doi:10.1111/j.1365-2109.2007.01671.x
  • Samocha, T., Addison, M., Lawrence, L., Craig, A., Collins, F. L., Castille, W. A., … Wood, F. (2004). Production of the Pacific white shrimp, Litopenaeus vannamei, in high-density greenhouse-enclosed raceways using low salinity groundwater. Journal Applied Aquaculture, 15, 1–19. doi:10.1300/j028v15n03_01
  • Sandifer, P. A., Hopkins, J. S., & Stokes, A. D. (1988). Intensification of shrimp culture in earthen ponds in South Carolina: Progress and prospects. Journal World Aquaculture Society, 19, 218–226. doi:10.1111/j.1749-7345.1988.tb00783.x
  • Seginer, I. (2009). Are restricted periods of over-stocking of recirculating aquaculture systems advisable? A simulation study. Aquaculture Engineering, 41(3), 194–206.
  • Seijo, J. C. (2004). Risk exceeding bioeconomics limit reference point in shrimp aquaculture systems. Aquaculture Economics Management, 8, 201–212. doi:10.1080/13657300409380363
  • Sinko, J. W. & Streifer, W. (1967). A new model for age-size structure of population. Ecology, 48, 910–918. doi:10.2307/1934533
  • Sookying, D., Silva, F.S. D., Davis, D. A., & Hanson, T. R. (2011) Effects of stocking density on the performance of Pacific white shrimp Litopenaeus vannamei cultured under pond and outdoor tank conditions using a high soybean meal diet. Aquaculture, 319(1), 232–239. doi:10.1016/j.aquaculture.2011.06.014
  • Van Wyk, P., Davis-Hodgkins, M., Laramore, C. R., Main, K. L., Mountain, J., & Scarpa, J. (1999). Farming marine shrimp in recirculating freshwater systems. FDACS contract M520. Tallahassee, FL, USA: Florida Department of Agriculture and Consumer Services.
  • Villanueva, R., Araneda, M. E., Vela, M., & Seijo, J. C. (2013). Selecting stocking density in different climatic seasons: A decision theory approach to intensive aquaculture. Aquaculture, 384–387, 25–34. doi:10.1016/j.aquaculture.2012.12.014
  • Whiting, D. G., Tolley, H. D., & Fellingham, G. W. (2000). An empirical Bayes procedure for adaptive forecasting of shrimp yield. Aquaculture, 182, 215–228. doi:10.1016/s0044-8486(99)00263-x
  • Williams, A. S., Davis, D. A., & Arnold, C. R. (1996). Density-dependent growth and survival of Penaeus setiferus and Penaeus vannamei in a semi-closed recirculating system. Journal World Aquaculture Society, 27, 107–112. doi:10.1111/j.1749-7345.1996.tb00600.x
  • Yu, R. & Leung, P. S. (2005). Optimal harvesting strategies for a multi-cycle and multi-pond shrimp operation: A practical network model. Mathematics and Computers in Simulation, 68, 339–354. doi:10.1016/j.matcom.2005.01.018
  • Yu, R. & Leung, P. S. (2009). Optimal harvest time in continuous aquacultural production: The case of nonhomogeneous production cycles. International Journal of Production Economics, 117, 267–270. doi:10.1016/j.ijpe.2008.11.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.