1,694
Views
41
CrossRef citations to date
0
Altmetric
Original Articles

Propagation of positional error in 3D GIS: estimation of the solar irradiation of building roofs

, , &
Pages 2269-2294 | Received 03 May 2015, Accepted 12 Jul 2015, Published online: 13 Aug 2015

References

  • Aarsen, R., et al., 2015. Installed base registration of decentralised solar panels with applications in crisis management. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, October, Montpellier. In press.
  • Alam, N., Coors, V., and Zlatanova, S., 2013. Detecting shadow for direct radiation using CityGML models for photovoltaic potentiality analysis. In: C. Ellul, et al., eds. Urban and regional data management. London: CRC Press, 191–196.
  • Arbia, G., Griffith, D., and Haining, R., 1998. Error propagation modelling in raster GIS: overlay operations. International Journal of Geographical Information Science, 12 (2), 145–167. doi:10.1080/136588198241932
  • Arroyo Ohori, K., et al., 2015a. Modeling a 3D city model and its levels of detail as a true 4D model. ISPRS International Journal of Geo-Information, 4 (3), 1055–1075. doi:10.3390/ijgi4031055
  • Arroyo Ohori, K., Ledoux, H., and Stoter, J., 2015b. A dimension-independent extrusion algorithm using generalised maps. International Journal of Geographical Information Science. In press. doi:10.1080/13658816.2015.1010535
  • Bartie, P., et al., 2010. Advancing visibility modelling algorithms for urban environments. Computers, Environment and Urban Systems, 34 (6), 518–531. doi:10.1016/j.compenvurbsys.2010.06.002
  • Baumanns, K. and Löwner, M.O., 2009. Refined estimation of solar energy potential on roof areas using decision trees on CityGML-data. In: Geophysical Research Abstracts. EGU General Assembly, April, Vienna, Austria, p. 14044.
  • Bayod-Rújula, A.A., Ortego-Bielsa, A., and Martínez-Gracia, A., 2011. Photovoltaics on flat roofs: energy considerations. Energy, 36 (4), 1996–2010. doi:10.1016/j.energy.2010.04.024
  • Beekhuizen, J., et al., 2014. Impact of input data uncertainty on environmental exposure assessment models: A case study for electromagnetic field modelling from mobile phone base stations. Environmental Research, 135, 148–155. doi:10.1016/j.envres.2014.05.038
  • Behrens, T.E.J., et al., 2003. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magnetic Resonance in Medicine, 50 (5), 1077–1088. doi:10.1002/mrm.10609
  • Ben Fekih, F.N. and Löwner, M.O., 2012. Abschätzung des nutzbaren Dachflächenanteils für Solarenergie mit CityGML-Gebäudemodellen und Luftbildern. In: M.O. Löwner, F. Hillen, and R. Wohlfahrt, eds. Geoinformatik 2012 “Mobilität und Umwelt”. Konferenzband zur Tagung Geoinformatik, March, Braunschweig, 171–177.
  • Ben-Haim, G., Dalyot, S., and Doytsher, Y., 2014. Local absolute vertical accuracy computation of wide-coverage digital terrain models. In: Proceedings of Joint International Conference on Geospatial Theory, Processing, Modelling and Applications, October, Toronto, Canada, 136–152.
  • Beneš, J., Wilkie, A., and Křivánek, J., 2014. Procedural modelling of urban road networks. Computer Graphics Forum, 33 (6), 132–142. doi:10.1111/cgf.12283
  • Besuievsky, G. and Patow, G., 2013. Customizable LoD for procedural architecture. Computer Graphics Forum, 32 (8), 26–34. doi:10.1111/cgf.2013.32.issue-8
  • Biljecki, F., et al., 2013. Revisiting the concept of level of detail in 3D city modelling. In: U. Isikdag, ed. ISPRS Annals. Proceedings of the ISPRS 8th 3D GeoInfo Conference & WG II/2 Workshop, November, Istanbul, 63–74.
  • Biljecki, F., et al., 2014. c. Formalisation of the level of detail in 3D city modelling. Computers, Environment and Urban Systems, 48, 1–15. doi:10.1016/j.compenvurbsys.2014.05.004
  • Biljecki, F., Ledoux, H., and Stoter, J., 2014a. Error propagation in the computation of volumes in 3D city models with the Monte Carlo method. In: S. Li and S. Dragicevic, eds. ISPRS Annals. Proceedings of the ISPRS/IGU Joint International Conference on Geospatial Theory, Processing, Modelling and Applications, October, Toronto, 31–39. doi:10.5194/isprsannals-II-2-31-2014
  • Biljecki, F., Ledoux, H., and Stoter, J., 2014b. Height references of CityGML LOD1 buildings and their influence on applications. In: M. Breunig, et al., eds. Proceedings of the 9th 3DGeoInfo Conference 2014, November, Dubai.
  • Biljecki, F., Ledoux, H., and Stoter, J., 2015a. An improved LOD specification for 3D building models and its CityGML realisation with the Random3Dcity procedural modelling engine. Computers, Environment and Urban Systems, Under review.
  • Biljecki, F., Ledoux, H., and Stoter, J., 2015b. Improving the consistency of multi-LOD CityGML datasets by removing redundancy. In: M. Breunig, et al., eds. 3D geoinformation science, Springer International Publishing, 1–17. doi:10.1007/978-3-319-12181-9_1
  • Boeters, R., et al., 2015. Automatically enhancing CityGML LOD2 models with a corresponding indoor geometry. International Journal of Geographical Information Science. In press. doi:10.1080/13658816.2015.1072201
  • Brenner, C., 2005. Building reconstruction from images and laser scanning. International Journal of Applied Earth Observation and Geoinformation, 6 (3–4), 187–198. doi:10.1016/j.jag.2004.10.006
  • Bretagnon, P. and Francou, G., 1988. Planetary theories in rectangular and spherical variables. VSOP 87 solutions. Astronomy and Astrophysics, 202, 309–315.
  • Brown, J.D. and Heuvelink, G.B.M., 2007. The Data Uncertainty Engine (DUE): a software tool for assessing and simulating uncertain environmental variables. Computers & Geosciences, 33 (2), 172–190. doi:10.1016/j.cageo.2006.06.015
  • Burnicki, A.C., Brown, D.G., and Goovaerts, P., 2007. Simulating error propagation in land-cover change analysis: The implications of temporal dependence. Computers, Environment and Urban Systems, 31 (3), 282–302. doi:10.1016/j.compenvurbsys.2006.07.005
  • Carneiro, C. and Golay, F., 2009. Solar radiation over the urban texture: LIDAR data and image processing techniques for environmental analysis at city scale. In: J. Lee and S. Zlatanova, eds. 3D Geo-information sciences. Berlin: Springer, 319–340. doi:10.1007/978-3-540-87395-2_20
  • Caspary, W. and Scheuring, R., 1993. Positional accuracy in spatial databases. Computers, Environment and Urban Systems, 17 (2), 103–110. doi:10.1016/0198-9715(93)90040-C
  • Catita, C., et al., 2014. Extending solar potential analysis in buildings to vertical facades. Computers & Geosciences, 66, 1–12. doi:10.1016/j.cageo.2014.01.002
  • Christensen, C.B. and Barker, G.M., 2001. Effects of tilt and azimuth on annual incident solar radiation for United States locations. In: Proceedings of Solar Forum 2001: Solar Energy: the Power to Choose, April, Washington, DC, 1–8.
  • Chwieduk, D.A., 2009. Recommendation on modelling of solar energy incident on a building envelope. Renewable Energy, 34 (3), 736–741. doi:10.1016/j.renene.2008.04.005
  • D’Agostino, R.B., 1971. An omnibus test of normality for moderate and large size samples. Biometrika, 58 (2), 341–348. doi:10.1093/biomet/58.2.341
  • David, M., Lauret, P., and Boland, J., 2013. Evaluating tilted plane models for solar radiation using comprehensive testing procedures, at a southern hemisphere location. Renewable Energy, 51 (C), 124–131. doi:10.1016/j.renene.2012.08.074
  • Davis, T.J. and Keller, C.P., 1997. Modelling uncertainty in natural resource analysis using fuzzy sets and Monte Carlo simulation: slope stability prediction. International Journal of Geographical Information Science, 11 (5), 409–434. doi:10.1080/136588197242239
  • De Bruin, S., Heuvelink, G.B.M., and Brown, J.D., 2008. Propagation of positional measurement errors to agricultural field boundaries and associated costs. Computers and Electronics in Agriculture, 63 (2), 245–256. doi:10.1016/j.compag.2008.03.005
  • Demain, C., Journée, M., and Bertrand, C., 2013. Evaluation of different models to estimate the global solar radiation on inclined surfaces. Renewable Energy, 50 (c), 710–721. doi:10.1016/j.renene.2012.07.031
  • Donkers, S., et al., 2015. Automatic conversion of IFC datasets to geometrically and semantically correct CityGML LOD3 buildings. Transactions in GIS. In press.
  • Eicker, U., et al., 2014. Assessing passive and active solar energy resources in cities using 3D city models. Energy Procedia, 57, 896–905. doi:10.1016/j.egypro.2014.10.299
  • Eicker, U., et al., 2015. Energy performance assessment in urban planning competitions. Applied Energy, 155, 323–333. doi:10.1016/j.apenergy.2015.05.094
  • Emmi, P.C. and Horton, C.A., 1995. A Monte Carlo simulation of error propagation in a GIS-based assessment of seismic risk. International Journal of Geographical Information Systems, 9 (4), 447–461. doi:10.1080/02693799508902049
  • Fan, L., et al., 2014. Propagation of vertical and horizontal source data errors into a TIN with linear interpolation. International Journal of Geographical Information Science, 28 (7), 1378–1400. doi:10.1080/13658816.2014.889299
  • Fath, K., et al., 2015. A method for predicting the economic potential of (building-integrated) photovoltaics in urban areas based on hourly radiance simulations. Solar Energy, 116, 357–370. doi:10.1016/j.solener.2015.03.023
  • Fischer, A., et al., 1998. Extracting buildings from aerial images using hierarchical aggregation in 2D and 3D. Computer Vision and Image Understanding, 72 (2), 185–203. doi:10.1006/cviu.1998.0721
  • Fisher, P.F., 1991. Modelling soil map-unit inclusions by Monte Carlo simulation. International Journal of Geographical Information Systems, 5 (2), 193–208. doi:10.1080/02693799108927843
  • Fisher, P.F., 2005. Models of uncertainty in spatial data. In: P.A. Longley, et al., eds. Geographical information systems. Principles, techniques, management and applications. Hoboken, NJ: Wiley, 191–205.
  • Freitas, S., et al., 2015. Modelling solar potential in the urban environment: state-of-the-art review. Renewable and Sustainable Energy Reviews, 41, 915–931. doi:10.1016/j.rser.2014.08.060
  • Goetz, M., 2013. Towards generating highly detailed 3D CityGML models from OpenStreetMap. International Journal of Geographical Information Science, 27 (5), 845–865. doi:10.1080/13658816.2012.721552
  • Goodchild, M.F., 1991. Issues of quality and uncertainty. In: J.C. Muller, ed. Advances in cartography. New York: Elsevier, 113–139.
  • Gooding, J., Crook, R., and Tomlin, A.S., 2015. Modelling of roof geometries from low-resolution LiDAR data for city-scale solar energy applications using a neighbouring buildings method. Applied Energy, 148, 93–104. doi:10.1016/j.apenergy.2015.03.013
  • Gosselin, P.H. and Cord, M., 2006. Feature-based approach to semi-supervised similarity learning. Pattern Recognition, 39 (10), 1839–1851. doi:10.1016/j.patcog.2006.04.017
  • Gröger, G. and Plümer, L., 2012. CityGML – interoperable semantic 3D city models. ISPRS Journal of Photogrammetry and Remote Sensing, 71, 12–33. doi:10.1016/j.isprsjprs.2012.04.004
  • Gruber, G., Menard, C., and Schachinger, B., 2008. Evaluation of the geometric accuracy of automatically recorded 3D – city models compared to GIS-data. In: The European Information Society. Berlin: Springer, 67–78.
  • Gulin, M., Vašak, M., and Baotić, M., 2013a. Estimation of the global solar irradiance on tilted surfaces. In: Proceedings of the 17th International Conference on Electrical Drives and Power Electronics (EDPE 2013), October, Dubrovnik, Croatia, 334–339.
  • Gulin, M., Vašak, M., and Perić, N., 2013b. Dynamical optimal positioning of a photovoltaic panel in all weather conditions. Applied Energy, 108, 429–438. doi:10.1016/j.apenergy.2013.03.006
  • Haala, N. and Kada, M., 2010. An update on automatic 3D building reconstruction. ISPRS Journal of Photogrammetry and Remote Sensing, 65 (6), 570–580. doi:10.1016/j.isprsjprs.2010.09.006
  • Harwin, S. and Lucieer, A., 2012. Assessing the accuracy of georeferenced point clouds produced via multi-view stereopsis from unmanned aerial vehicle (UAV) imagery. Remote Sensing, 4 (6), 1573–1599. doi:10.3390/rs4061573
  • Helbich, M., et al., 2013. Boosting the predictive accuracy of urban hedonic house price models through airborne laser scanning. Computers, Environment and Urban Systems, 39 (C), 81–92. doi:10.1016/j.compenvurbsys.2013.01.001
  • Hengl, T., Heuvelink, G.B.M., and Van Loon, E.E., 2010. On the uncertainty of stream networks derived from elevation data: the error propagation approach. Hydrology and Earth System Sciences, 14 (7), 1153–1165. doi:10.5194/hess-14-1153-2010
  • Herbert, G. and Chen, X., 2015. A comparison of usefulness of 2D and 3D representations of urban planning. Cartography and Geographic Information Science, 42 (1), 22–32. doi:10.1080/15230406.2014.987694
  • Heuvelink, G.B.M., 2005. Propagation of error in spatial modelling with GIS. In: P.A. Longley, et al., eds. Geographical information systems. Principles, techniques, management and applications. Hoboken, NJ: Wiley, 207–217.
  • Heuvelink, G.B.M., Brown, J.D., and Van Loon, E.E., 2007. A probabilistic framework for representing and simulating uncertain environmental variables. International Journal of Geographical Information Science, 21 (5), 497–513. doi:10.1080/13658810601063951
  • Heuvelink, G.B.M. and Burrough, P.A., 1993. Error propagation in cartographic modelling using Boolean logic and continuous classification. International Journal of Geographical Information Systems, 7 (3), 231–246. doi:10.1080/02693799308901954
  • Heuvelink, G.B.M., Burrough, P.A., and Stein, A., 1989. Propagation of errors in spatial modelling with GIS. International Journal of Geographical Information Systems, 3 (4), 303–322. doi:10.1080/02693798908941518
  • Hofierka, J. and Kaňuk, J., 2009. Assessment of photovoltaic potential in urban areas using open-source solar radiation tools. Renewable Energy, 34 (10), 2206–2214. doi:10.1016/j.renene.2009.02.021
  • Hofierka, J. and Zlocha, M., 2012. A new 3-D solar radiation model for 3-D city models. Transactions in GIS, 16 (5), 681–690. doi:10.1111/tgis.2012.16.issue-5
  • Hong, S. and Vonderohe, A., 2014. Uncertainty and sensitivity assessments of GPS and GIS integrated applications for transportation. Sensors, 14 (2), 2683–2702. doi:10.3390/s140202683
  • Huld, T., Müller, R., and Gambardella, A., 2012. A new solar radiation database for estimating PV performance in Europe and Africa. Solar Energy, 86 (6), 1803–1815. doi:10.1016/j.solener.2012.03.006
  • INSPIRE Thematic Working Group Buildings, 2013. D2.8.III.2 INSPIRE data specification on buildings – technical guidelines [online]. Available from: http://inspire.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_BU_v3.0.pdf [Accessed 28 July 2015].
  • Isikdag, U. and Zlatanova, S., 2009. Towards defining a framework for automatic generation of buildings in CityGML using building information models. 3D Geo-Information Sciences. Berlin, Heidelberg: Springer Berlin Heidelberg, 79–96.
  • Jakubiec, J.A. and Reinhart, C.F., 2013. A method for predicting city-wide electricity gains from photovoltaic panels based on LiDAR and GIS data combined with hourly daysim simulations. Solar Energy, 93, 127–143. doi:10.1016/j.solener.2013.03.022
  • Jochem, A., et al., 2009. Automatic roof plane detection and analysis in airborne lidar point clouds for solar potential assessment. Sensors, 9 (7), 5241–5262. doi:10.3390/s90705241
  • Kaartinen, H. et al., 2005. Accuracy of 3D city models: EuroSDR comparison. In: G. Vosselman and C. Brenner, eds. ISPRS annals. proceedings of the ISPRS workshop laser scanning 2005. September The Netherlands: Enschede, 227–232.
  • Kaden, R. and Kolbe, T.H., 2014. Simulation-based total energy demand estimation of buildings using semantic 3D city models. International Journal of 3-D Information Modeling, 3 (2), 35–53. doi:10.4018/IJ3DIM
  • Kalogirou, S.A., 2003. Generation of typical meteorological year (TMY-2) for Nicosia, Cyprus. Renewable Energy, 28 (15), 2317–2334. doi:10.1016/S0960-1481(03)00131-9
  • Kelly, T. and Wonka, P., 2011. Interactive architectural modeling with procedural extrusions. ACM Transactions on Graphics, 30 (2), 1–15. doi:10.1145/1944846
  • Kolbe, T.H., 2009. Representing and exchanging 3D city models with CityGML. In: S. Zlatanova and J. Lee, eds. 3D geo-information sciences. Heidelberg: Springer, 15–31.
  • Kumar, L., Skidmore, A.K., and Knowles, E., 1997. Modelling topographic variation in solar radiation in a GIS environment. International Journal of Geographical Information Science, 11 (5), 475–497. doi:10.1080/136588197242266
  • Ledoux, H. and Meijers, M., 2011. Topologically consistent 3D city models obtained by extrusion. International Journal of Geographical Information Science, 25 (4), 557–574. doi:10.1080/13658811003623277
  • Leica, 2008. Leica ALS70-CM city mapping airborne LIDAR product specifications [online]. Available from: http://www.leica-geosystems.com/downloads123/zz/airborne/ALS70/product-specification/ALS70CM_ProductSpecs_en.pdf [Accessed 28 July 2015].
  • Lemmens, M., 2011. Quality of Geo-information. Geo-information. technologies, applications and the environment. Dordrecht: Springer Netherlands, 211–227.
  • Li, Y., Brimicombe, A.J., and Ralphs, M.P., 2000. Spatial data quality and sensitivity analysis in GIS and environmental modelling: the case of coastal oil spills. Computers, Environment and Urban Systems, 24 (2), 95–108. doi:10.1016/S0198-9715(99)00048-4
  • Li, Z., Zhang, Z., and Davey, K., 2015. Estimating geographical PV potential using LiDAR data for buildings in downtown San Francisco. Transactions in GIS. In press.
  • Liang, J., et al., 2014. A visualization-oriented 3D method for efficient computation of urban solar radiation based on 3D–2D surface mapping. International Journal of Geographical Information Science, 28 (4), 780–798. doi:10.1080/13658816.2014.880168
  • Liang, J., et al., 2015. An open-source 3D solar radiation model integrated with a 3D geographic information system. Environmental Modelling & Software, 64 (C), 94–101. doi:10.1016/j.envsoft.2014.11.019
  • Loch-Dehbi, S. and Plümer, L., 2011. Automatic reasoning for geometric constraints in 3D city models with uncertain observations. ISPRS Journal of Photogrammetry and Remote Sensing, 66 (2), 177–187. doi:10.1016/j.isprsjprs.2010.12.003
  • Lukač, N., et al., 2013. Rating of roofs’ surfaces regarding their solar potential and suitability for PV systems, based on LiDAR data. Applied Energy, 102, 803–812. doi:10.1016/j.apenergy.2012.08.042
  • MacLeod, M., Fraser, A.J., and Mackay, D., 2002. Evaluating and expressing the propagation of uncertainty in chemical fate and bioaccumulation models. Environmental Toxicology and Chemistry, 21 (4), 700–709. doi:10.1002/etc.v21:4
  • Mainzer, K., et al., 2014. A high-resolution determination of the technical potential for residential-roof-mounted photovoltaic systems in Germany. Solar Energy, 105, 715–731. doi:10.1016/j.solener.2014.04.015
  • Mardaljevic, J. and Rylatt, M., 2003. Irradiation mapping of complex urban environments: an image-based approach. Energy and Buildings, 35 (1), 27–35. doi:10.1016/S0378-7788(02)00077-4
  • Masters, G.M., 2013. Renewable and efficient electric power systems. Hoboken, NJ: Wiley-Interscience.
  • Meeus, J.H., 1998. Astronomical algorithms. Richmond, VA: Willmann-Bell.
  • Müller, P., et al., 2006. Procedural modeling of buildings. ACM Transactions on Graphics, 25 (3), 614–623. doi:10.1145/1141911.1141931
  • Musialski, P., et al., 2013. A survey of urban reconstruction. Computer Graphics Forum, 32 (6), 146–177. doi:10.1111/cgf.12077
  • Nguyen, H.T. and Pearce, J.M., 2012. Incorporating shading losses in solar photovoltaic potential assessment at the municipal scale. Solar Energy, 86 (5), 1245–1260. doi:10.1016/j.solener.2012.01.017
  • Nouvel, R., et al., 2013. CityGML-based 3D city model for energy diagnostics and urban energy policy support. In: Proceedings of BS2013: 13th Conference of International Building Performance Simulation Association, August, Chambéry, France, 218–225.
  • Nouvel, R., et al., 2014. Urban energy analysis based on 3D city model for national scale applications. In: Proceedings of the Fifth German-Austrian IBPSA Conference (BauSIM 2014), September, Aachen, 83–90.
  • Open Geospatial Consortium, 2012. OGC City Geography Markup Language (CityGML) encoding standard 2.0.0 [online]. Available from: http://www.opengeospatial.org/standards/citygml [Accessed 28 July 2015].
  • Oude Elberink, S. and Vosselman, G., 2011. Quality analysis on 3D building models reconstructed from airborne laser scanning data. ISPRS Journal of Photogrammetry and Remote Sensing, 66 (2), 157–165. doi:10.1016/j.isprsjprs.2010.09.009
  • Perez, R., et al., 1990. Modeling daylight availability and irradiance components from direct and global irradiance. Solar Energy, 44 (5), 271–289. doi:10.1016/0038-092X(90)90055-H
  • Qi, H., Qi, P., and Altinakar, M.S., 2013. GIS-based spatial Monte Carlo analysis for integrated flood management with two dimensional flood simulation. Water Resources Management, 27 (10), 3631–3645. doi:10.1007/s11269-013-0370-8
  • Reda, I. and Andreas, A., 2004. Solar position algorithm for solar radiation applications. Solar Energy, 76 (5), 577–589. doi:10.1016/j.solener.2003.12.003
  • Redweik, P., Catita, C., and Brito, M., 2013. Solar energy potential on roofs and facades in an urban landscape. Solar Energy, 97, 332–341. doi:10.1016/j.solener.2013.08.036
  • Rottensteiner, F., et al., 2014. Results of the ISPRS benchmark on urban object detection and 3D building reconstruction. ISPRS Journal of Photogrammetry and Remote Sensing, 93, 256–271. doi:10.1016/j.isprsjprs.2013.10.004
  • Rowlands, I.H., Kemery, B.P., and Beausoleil-Morrison, I., 2011. Optimal solar-PV tilt angle and azimuth: an Ontario (Canada) case-study. Energy Policy, 39 (3), 1397–1409. doi:10.1016/j.enpol.2010.12.012
  • Santos, T., et al., 2014. Applications of solar mapping in the urban environment. Applied Geography, 51, 48–57. doi:10.1016/j.apgeog.2014.03.008
  • Saran, S., et al., 2015. CityGML at semantic level for urban energy conservation strategies. Annals of GIS, 21 (1), 27–41. doi:10.1080/19475683.2014.992370
  • Shi, W., 1998. A generic statistical approach for modelling error of geometric features in GIS. International Journal of Geographical Information Science, 12 (2), 131–143. doi:10.1080/136588198241923
  • Shi, W., Cheung, C.K., and Zhu, C., 2003. Modelling error propagation in vector-based buffer analysis. International Journal of Geographical Information Science, 17 (3), 251–271. doi:10.1080/1365881022000016007
  • Shi, W., Li, Q.Q., and Zhu, C., 2005. Estimating the propagation error of DEM from higher-order interpolation algorithms. International Journal of Remote Sensing, 26 (14), 3069–3084. doi:10.1080/01431160500057905
  • Stoter, J., De Kluijver, H., and Kurakula, V., 2008. 3D noise mapping in urban areas. International Journal of Geographical Information Science, 22 (8), 907–924. doi:10.1080/13658810701739039
  • Strzalka, A., et al., 2011. 3D City modeling for urban scale heating energy demand forecasting. HVAC&R Research, 17 (4), 526–539.
  • Strzalka, A., et al., 2012. Large scale integration of photovoltaics in cities. Applied Energy, 93, 413–421. doi:10.1016/j.apenergy.2011.12.033
  • Šúri, M., et al., 2007. Potential of solar electricity generation in the European union member states and candidate countries. Solar Energy, 81 (10), 1295–1305. doi:10.1016/j.solener.2006.12.007
  • Šúri, M. and Hofierka, J., 2004. A new GIS-based solar radiation model and its application to photovoltaic assessments. Transactions in GIS, 8 (2), 175–190. doi:10.1111/j.1467-9671.2004.00174.x
  • Šúri, M., Huld, T.A., and Dunlop, E.D., 2005. PV-GIS: a web-based solar radiation database for the calculation of PV potential in Europe. International Journal of Sustainable Energy, 24 (2), 55–67. doi:10.1080/14786450512331329556
  • Suveg, I. and Vosselman, G., 2004. Reconstruction of 3D building models from aerial images and maps. ISPRS Journal of Photogrammetry and Remote Sensing, 58 (3–4), 202–224. doi:10.1016/j.isprsjprs.2003.09.006
  • Taylor, J.R., 1997. An introduction to error analysis. The study of uncertainties in physical measurements. Sausalito, CA: University Science Books.
  • Thevenard, D.J. and Brunger, A.P., 2002. The development of typical weather years for international locations: part I, algorithms. ASHRAE Transactions, 108, 376–383.
  • Tomljenovic, I., et al., 2015. Building extraction from airborne laser scanning data: an analysis of the state of the art. Remote Sensing, 7 (4), 3826–3862. doi:10.3390/rs70403826
  • Tooke, T.R., et al., 2011. Tree structure influences on rooftop-received solar radiation. Landscape and Urban Planning, 102 (2), 73–81. doi:10.1016/j.landurbplan.2011.03.011
  • Tsiliakou, E., Labropoulos, T., and Dimopoulou, E., 2014. Procedural modeling in 3D GIS environment. International Journal of 3-D Information Modeling, 3 (3), 17–34. doi:10.4018/ij3dim.2014070102
  • Van Oort, P., et al., 2005. A variance and covariance equation for area estimates with a geographic information system. Forest Science, 51 (4), 347–356.
  • Vanegas, C.A., et al., 2012. Procedural generation of parcels in urban modeling. Computer Graphics Forum, 31 (2), 681–690. doi:10.1111/j.1467-8659.2012.03047.x
  • Veregin, H., 1995. Developing and testing of an error propagation model for GIS overlay operations. International Journal of Geographical Information Systems, 9 (6), 595–619. doi:10.1080/02693799508902059
  • Veregin, H., 2005. Data quality parameters. In: P.A. Longley, et al., eds. Geographical information systems. Principles, techniques, management and applications. Hoboken, NJ: John Wiley & Sons, 177–189.
  • Vermeulen, T., et al., 2015. Urban layout optimization framework to maximize direct solar irradiation. Computers, Environment and Urban Systems, 51, 1–12. doi:10.1016/j.compenvurbsys.2015.01.001
  • Vosselman, G. and Dijkman, S., 2001. 3D building model reconstruction from point clouds and ground plans. In: ISPRS Archives. Proceedings of the workshop on Land surface mapping and characterization using laser altimetry, October, Annapolis, Maryland, 37–44.
  • Wagen, J.-F. and Rizk, K., 2003. Radiowave propagation, building databases, and GIS: anything in common? A radio engineer’s viewpoint. Environment and Planning B: Planning and Design, 30 (5), 767–787. doi:10.1068/b2958
  • Wiginton, L.K., Nguyen, H.T., and Pearce, J.M., 2010. Quantifying rooftop solar photovoltaic potential for regional renewable energy policy. Computers, Environment and Urban Systems, 34 (4), 345–357. doi:10.1016/j.compenvurbsys.2010.01.001
  • Wittmann, H., et al., 1997. Identification of roof areas suited for solar energy conversion systems. Renewable Energy, 11 (1), 25–36. doi:10.1016/S0960-1481(96)00116-4
  • Wonka, P., et al., 2003. Instant architecture. ACM Transactions on Graphics, 22 (3), 669–677. doi:10.1145/882262.882324
  • Xue, J., Leung, Y., and Ma, J.-H., 2015. High-order Taylor series expansion methods for error propagation in geographic information systems. Journal of Geographical Systems, 17 (2), 187–206. doi:10.1007/s10109-014-0207-x
  • Yaagoubi, R., et al., 2015. HybVOR: A voronoi-based 3D GIS approach for camera surveillance network Placement. ISPRS International Journal of Geo-Information, 4 (2), 754–782. doi:10.3390/ijgi4020754
  • Yang, H. and Lu, L., 2007. The optimum tilt angles and orientations of PV claddings for building-integrated photovoltaic (BIPV) applications. Journal of Solar Energy Engineering, 129 (2), 253. doi:10.1115/1.2212439
  • Yasumoto, S., et al., 2012. Virtual city models for assessing environmental equity of access to sunlight: a case study of Kyoto, Japan. International Journal of Geographical Information Science, 26 (1), 1–13. doi:10.1080/13658816.2011.570268
  • Yeh, A.G.O. and Li, X., 2006. Errors and uncertainties in urban cellular automata. Computers, Environment and Urban Systems, 30 (1), 10–28. doi:10.1016/j.compenvurbsys.2004.05.007
  • Ying, M., Jingjue, J., and Fulin, B., 2002. 3D-city model supporting for CCTV monitoring system. In: ISPRS archives. Proceedings of the ISPRS commission IV symposium on geospatial theory, processing and applications, July, Ottawa, 1–4.
  • Yu, B., et al., 2009. Investigating impacts of urban morphology on spatio-temporal variations of solar radiation with airborne LIDAR data and a solar flux model: a case study of downtown Houston. International Journal of Remote Sensing, 30 (17), 4359–4385. doi:10.1080/01431160802555846
  • Zhang, S., Li, X., and Chen, Y., 2015. Error assessment of grid-based direct solar radiation models. International Journal of Geographical Information Science, 1–25. In press. doi:10.1080/13658816.2015.1055273
  • Zhang, W., et al., 2014. 3D building roof modeling by optimizing primitive’s parameters using constraints from LiDAR data and aerial imagery. Remote Sensing, 6 (9), 8107–8133. doi:10.3390/rs6098107
  • Zhou, G., et al., 2003. Spatial probabilistic modeling of slope failure using an integrated GIS Monte Carlo simulation approach. Engineering Geology, 68 (3–4), 373–386. doi:10.1016/S0013-7952(02)00241-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.