1,155
Views
60
CrossRef citations to date
0
Altmetric
Original Articles

A partitioned and asynchronous cellular automata model for urban growth simulation

, &
Pages 637-659 | Received 29 Jun 2015, Accepted 15 Aug 2015, Published online: 25 Sep 2015

References

  • Akkaş, E., et al., 2015. Application of decision tree algorithm for classification and identification of natural minerals using SEM-EDS. Computers & Geosciences, 80, 38–48. doi:10.1016/j.cageo.2015.03.015
  • Almeida, C.M., et al., 2008. Using neural networks and cellular automata for modelling intra-urban land-use dynamics. International Journal of Geographical Information Science, 22, 943–963. doi:10.1080/13658810701731168
  • Angel, S., et al., 2011. The dimensions of global urban expansion: estimates and projections for all countries, 2000–2050. Progress in Planning, 75, 53–107. doi:10.1016/j.progress.2011.04.001
  • Arsanjani, J.J., et al., 2013. Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 21, 265–275. doi:10.1016/j.jag.2011.12.014
  • Bárcena, J.F., et al., 2015. Selecting model scenarios of real hydrodynamic forcings on mesotidal and macrotidal estuaries influenced by river discharges using K-means clustering. Environmental Modelling & Software, 68 (2015), 70–82. doi:10.1016/j.envsoft.2015.02.007
  • Barredo, J.I., et al., 2004. Modelling future urban scenarios in developing countries: an application case study in Lagos, Nigeria. Environment and Planning B: Planning and Design, 31 (1), 65–84. doi:10.1068/b29103
  • Cao, M., et al., 2015. A new discovery of transition rules for cellular automata by using cuckoo search algorithm. International Journal of Geographical Information Science, 29 (5), 1–19. doi:10.1016/j.ins.2014.08.033
  • Cao, M., et al., 2013. A cellular automata model for simulating the evolution of positive–negative terrains in a small loess watershed. International Journal of Geographical Information Science, 27 (7), 1349–1363. doi:10.1080/13658816.2012.756882
  • Dahal, K.R. and Chow, T.E., 2014. An agent-integrated irregular automata model of urban land-use dynamics. International Journal of Geographical Information Science, 28 (11), 2281–2303. doi:10.1080/13658816.2014.917646
  • Dahal, K.R. and Chow, T.E., 2015. Characterization of neighborhood sensitivity of an irregular cellular automata model of urban growth. International Journal of Geographical Information Science, 29 (3), 1–23.
  • Feng, Y. and Liu, Y., 2013. A heuristic cellular automata approach for modelling urban land-use change based on simulated annealing. International Journal of Geographical Information Science, 27 (3), 449–466. doi:10.1080/13658816.2012.695377
  • Friedl, M.A. and Brodley, C.E., 1997. Decision tree classification of land cover from remotely sensed data. Remote Sensing of Environment, 61, 399–409. doi:10.1016/S0034-4257(97)00049-7
  • García, A.M., et al., 2013. Calibration of an urban cellular automaton model by using statistical techniques and a genetic algorithm. Application to a small urban settlement of NW Spain. International Journal of Geographical Information Science, 27 (8), 1593–1611. doi:10.1080/13658816.2012.762454
  • Huang, B., et al., 2009. Land-use-change modeling using unbalanced support-vector machines. Environment and Planning B: Planning and Design, 36, 398–416. doi:10.1068/b33047
  • Kasanko, M., et al., 2006. Are European cities becoming dispersed? A comparative analysis of 15 European urban areas. Landscape and Urban Planning, 77 (1–2), 111–130. doi:10.1016/j.landurbplan.2005.02.003
  • Li, X., et al., 2013. Knowledge transfer and adaptation for land-use simulation with a logistic cellular automaton. International Journal of Geographical Information Science, 27 (10), 1829–1848. doi:10.1080/13658816.2013.825264
  • Li, X. and Yeh, A.G., 2004. Data mining of cellular automata’s transition rules. International Journal of Geographical Information Science, 18 (8), 723–744. doi:10.1080/13658810410001705325
  • Li, X. and Yeh, A.G.O., 2002. Neural-network-based cellular automata for simulating multiple land use changes using GIS. International Journal of Geographical Information Science, 16, 323–343. doi:10.1080/13658810210137004
  • Li, X., et al., 2012. Assimilating process context information of cellular automata into change detection for monitoring land use changes. International Journal of Geographical Information Science, 26 (9), 1667–1687. doi:10.1080/13658816.2011.643803
  • Liao, J., et al., 2014. A neighbor decay cellular automata approach for simulating urban expansion based on particle swarm intelligence. International Journal of Geographical Information Science, 28 (4), 720–738. doi:10.1080/13658816.2013.869820
  • Liu, J., Liu, M., and Zhuang, D., 2010a. Spatial pattern analysis of China’s recent land-use change. Chinese Science, 32, 1031–1040.
  • Liu, J., et al., 2010b. Spatial patterns and driving forces of land use change in China during the early 21st century. Journal of Geographical Sciences, 20 (4), 483–494. doi:10.1007/s11442-010-0483-4
  • Liu, X., et al., 2008. Simulating complex urban development using kernel-based non-linear cellular automata. Ecological Modelling, 211, 169–181. doi:10.1016/j.ecolmodel.2007.08.024
  • Liu, X., et al., 2014. Simulating urban growth by integrating landscape expansion index (LEI) and cellular automata. International Journal of Geographical Information Science, 28 (1), 148–163. doi:10.1080/13658816.2013.831097
  • Liu, Y., 2012. Modelling sustainable urban growth in a rapidly urbanising region using a fuzzy-constrained cellular automata approach. International Journal of Geographical Information Science, 26 (1), 151–167. doi:10.1080/13658816.2011.577434
  • Moghadam, H.S. and Helbich, M., 2013. Spatiotemporal urbanization processes in the megacity of Mumbai, India: A Markov chains-cellular automata urban growth model. Applied Geography, 40, 140–149. doi:10.1016/j.apgeog.2013.01.009
  • Nayak, D.R., Sahu, S.K., and Mohammed, J., 2013. A cellular automata based optimal edge detection technique using twenty-five neighborhood model. International Journal of Computer Applications, 84 (10), 27–33.
  • Perzy, K., Sitko, M., and Madej, Ł., 2014. Numerical modelling of fracture based on coupled cellular automata finite element approach. In: J. Was, G. C. Sirakoulis, and S. Bandini, eds. Cellular automata. Krakow: Springer, 156–165.
  • Pontius, G.R., et al., 2008. Comparing the input, output, and validation maps for several models of land change. The Annals of Regional Science, 42 (1), 11–37. doi:10.1007/s00168-007-0138-2
  • Seto, K.C., et al., 2011. A meta-analysis of global urban land expansion. PLos ONE, 6, e23777. doi:10.1371/journal.pone.0023777.
  • Seto, K.C., Guneralp, B., and Hutyra, L.R., 2012. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences, 109 (40), 16083–16088. doi:10.1073/pnas.1211658109
  • Tobler, W.R., 1970. A computer movie simulating urban growth in the Detroit region. Economic Geography, 46, 234–240. doi:10.2307/143141
  • UN. 2012. World Urbanization Prospects: The 2011 Revision Highlights. New York, NY: United Nations Department of Economic and Social Affairs/Population Division. (http://esa.un.org/unup/pdf/WUP2011_Highlights.pdf).
  • Van Vliet, J., et al., 2013. Measuring the neighbourhood effect to calibrate land use models. Computers, Environment and Urban Systems, 41, 55–64. doi:10.1016/j.compenvurbsys.2013.03.006
  • Van Vliet, J., White, R., and Dragicevic, S., 2009. Modelling urban growth using a variable grid cellular automaton. Computer Environment and Urban Systems, 33 (1), 3–43.
  • Visser, H. and De Nijs, T., 2006. The map comparison kit. Environmental Modelling & Software, 21, 346–358. doi:10.1016/j.envsoft.2004.11.013
  • White, R., Uljee, I., and Engelen, G., 2012. Integrated modelling of population, employment and land-use change with a multiple activity-based variable grid cellular automaton. International Journal of Geographical Information Science, 26 (7), 1251–1280. doi:10.1080/13658816.2011.635146
  • Wu, J., et al., 2011. Quantifying spatiotemporal patterns of urbanization: the case of the two fastest growing metropolitan regions in the United States. Ecological Complexity, 8 (1), 1–8. doi:10.1016/j.ecocom.2010.03.002
  • Yang, J., et al., 2013. An intelligent method to discover transition rules for cellular automata using bee colony optimisation. International Journal of Geographical Information Science, 27 (10), 1849–1864. doi:10.1080/13658816.2013.823498
  • Yang, Q.S., Li, X., and Shi, X., 2008. Cellular automata for simulating land use changes based on support vector machines. Computers & Geosciences, 34, 592–602. doi:10.1016/j.cageo.2007.08.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.