949
Views
25
CrossRef citations to date
0
Altmetric
Article

3D building roof reconstruction from airborne LiDAR point clouds: a framework based on a spatial database

, , &
Pages 1359-1380 | Received 16 Apr 2016, Accepted 28 Feb 2017, Published online: 09 Mar 2017

References

  • Andrew, A.M., 1979. Another efficient algorithm for convex hulls in two dimensions. Information Processing Letters, 9 (5), 216–219. doi:10.1016/0020-0190(79)90072-3
  • Awrangjeb, M., 2016. Using point cloud data to identify, trace, and regularize the outlines of buildings. International Journal of Remote Sensing, 37 (3), 551–579. doi:10.1080/01431161.2015.1131868
  • Awrangjeb, M., Ravanbakhsh, M., and Fraser, C.S., 2010. Automatic detection of residential buildings using LIDAR data and multispectral imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 65 (5), 457–467. doi:10.1016/j.isprsjprs.2010.06.001
  • Axelsson, P., 1999. Processing of laser scanner data—algorithms and applications. ISPRS Journal of Photogrammetry and Remote Sensing, 54 (2–3), 138–147. doi:10.1016/S0924-2716(99)00008-8
  • Ballard, D.H., 1981. Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition, 13 (2), 111–122. doi:10.1016/0031-3203(81)90009-1
  • Barber, C.B., Dobkin, D.P., and Huhdanpaa, H., 1996. The quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software, 22 (4), 469–483. doi:10.1145/235815.235821
  • Cazals, F., et al., 2005. Conformal alpha shapes. In: M. Alexa, et al., eds. Symposium on point-based graphics (2005), 21-22 June 2005 Stony Brook, NY, USA. Switzerland: The Eurographics Association, 55–61. doi:10.2312/SPBG/SPBG05/055-061
  • Cramer, M., 2010. The DGPF test on digital aerial camera evaluation – overview and test design. Photogrammetrie – Fernerkundung – Geoinformation, 2010 (2), 73–82. doi:10.1127/1432-8364/2010/0041
  • Dorninger, P. and Pfeifer, N., 2008. A comprehensive automated 3D approach for building extraction, reconstruction, and regularization from airborne laser scanning point clouds. Sensors, 8 (11), 7323–7343. doi:10.3390/s8117323
  • Douglas, D. and Peucker, T., 1973. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica: The International Journal for Geographic Information and Geovisualization, 10 (2), 112–122. doi:10.3138/FM57-6770-U75U-7727
  • Duda, R.O. and Hart, P.E., 1972. Use of the Hough transformation to detect lines and curves in pictures. Communications of the ACM, 15 (1), 11–15. doi:10.1145/361237.361242
  • Eddy, W.F., 1977. A new convex hull algorithm for planar sets. ACM Transactions on Mathematical Software, 3 (4), 398–403. doi:10.1145/355759.355766
  • Edelsbrunner, H., Kirkpatrick, D., and Seidel, R., 1983. On the shape of a set of points in the plane. IEEE Transactions on Information Theory, 29 (4), 551–559. doi:10.1109/TIT.1983.1056714
  • Edelsbrunner, H. and Mücke, E.P., 1994. Three-dimensional alpha shapes. ACM Transactions on Graphics, 13 (1), 43–72. doi:10.1145/174462.156635
  • Ester, M., et al., 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In: E. Simoudis, J. Han, and U. Fayyad, eds. Proceedings of the second international conference on Knowledge Discovery and Data mining (KDD-96), 2–4 August 1996 Portland. Menlo Park, CA: AAAI Press, 226–231.
  • Estivill-Castro, V., 2002. Why so many clustering algorithms: a position paper. ACM SIGKDD Explorations Newsletter, 4 (1), 65–75. doi:10.1145/568574.568575
  • Filin, S. and Pfeifer, N., 2006. Segmentation of airborne laser scanning data using a slope adaptive neighborhood. ISPRS Journal of Photogrammetry and Remote Sensing, 60 (2), 71–80. doi:10.1016/j.isprsjprs.2005.10.005
  • Fischler, M.A. and Bolles, R.C., 1981. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24 (6), 381–395. doi:10.1145/358669.358692
  • Graham, R.L., 1972. An efficient algorith for determining the convex hull of a finite planar set. Information Processing Letters, 1 (4), 132–133. doi:10.1016/0020-0190(72)90045-2
  • Grigillo, D. and Kanjir, U., 2012. Urban object extraction from digital surface model and digital aerial images. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, I-3, 215–220. doi:10.5194/isprsannals-I-3-215-2012
  • Haala, N. and Kada, M., 2010. An update on automatic 3D building reconstruction. ISPRS Journal of Photogrammetry and Remote Sensing, 65 (6), 570–580. doi:10.1016/j.isprsjprs.2010.09.006
  • Hellerstein, J.M., Naughton, J.F., and Pfeffer, A., 1995. Generalized search trees for database systems. In: U. Dayal, P.M.D. Gray, and S. Nishio, eds. Proceedings of the 21th international conference on very large data bases, 11–15 September 1995 Zurich, Switzerland. San Francisco, CA: Morgan Kaufmann Publishers Inc, 562–573.
  • Henn, A., et al., 2013. Model driven reconstruction of roofs from sparse LIDAR point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 76, 17–29. doi:10.1016/j.isprsjprs.2012.11.004
  • Huang, H., Brenner, C., and Sester, M., 2013. A generative statistical approach to automatic 3D building roof reconstruction from laser scanning data. ISPRS Journal of Photogrammetry and Remote Sensing, 79, 29–43. doi:10.1016/j.isprsjprs.2013.02.004
  • Jarvis, R.A., 1973. On the identification of the convex hull of a finite set of points in the plane. Information Processing Letters, 2 (1), 18–21. doi:10.1016/0020-0190(73)90020-3
  • Kim, C., et al., 2016. Segmentation of planar surfaces from laser scanning data using the magnitude of normal position vector for adaptive neighborhoods. Sensors, 16 (2), 140. doi:10.3390/s16020140
  • Kwak, E. and Habib, A., 2014. Automatic representation and reconstruction of DBM from LiDAR data using recursive minimum bounding rectangle. ISPRS Journal of Photogrammetry and Remote Sensing, 93 (7), 171–191. doi:10.1016/j.isprsjprs.2013.10.003
  • Lari, Z. and Habib, A., 2014. An adaptive approach for the segmentation and extraction of planar and linear/cylindrical features from laser scanning data. ISPRS Journal of Photogrammetry and Remote Sensing, 93 (7), 192–212. doi:10.1016/j.isprsjprs.2013.12.001
  • Leberl, F., et al., 2010. Point clouds: LiDAR versus 3D vision. Photogrammetric Engineering Remote Sensing, 76 (10), 1123–1134. doi:10.14358/PERS.76.10.1123
  • Mandal, D.P. and Murthy, C.A., 1997. Selection of alpha for alpha-hull in ℝ2. Pattern Recognition, 30 (10), 1759–1767. doi:10.1016/S0031-3203(96)00176-8
  • Melkemi, M. and Djebali, M., 2001. Weighted A-shape: a descriptor of the shape of a point set. Pattern Recognition, 34 (6), 1159–1170. doi:10.1016/S0031-3203(00)00063-7
  • Moreira, A. and Santos, M.Y., 2007. Concave hull: a k-nearest neighbours approach for the computation of the region occupied by a set of points. In: J. Braz, P. Vázquez, and J.M. Pereira, eds. Proceedings of the second international conference on computer graphics theory and applications, 8-11 March 2007 Barcelona, Spain. Setubal, Portugal: Institute for Systems and Technologies of Information, Control and Communication, 61–68.
  • OGC (Open Geospatial Consortium), 2006. OpenGISⓇ implementation standard for geographic information - simple feature access - part 1: common architecture. OGC06-103r4. Available from: http://portal.opengeospatial.org/files/?artifact_id=25355
  • Preparata, F.P. and Hong, S.J., 1977. Convex hulls of finite sets of points in two and three dimensions. Communications of the ACM, 20 (2), 87–93. doi:10.1145/359423.359430
  • Rabbani, T., van Den Heuvel, F.A., and Vosselman, G., 2006. Segmentation of point clouds using smoothness constraint. International archives of photogrammetry, remote sensing and spatial information sciences, 36 (5), 248–253.
  • Ramer, U., 1972. An iterative procedure for the polygonal approximation of plane curves. Computer Graphics and Image Processing, 1 (3), 244–256. doi:10.1016/S0146-664X(72)80017-0
  • Rottensteiner, F., et al., 2014. Results of the ISPRS benchmark on urban object detection and 3D building reconstruction. ISPRS Journal of Photogrammetry and Remote Sensing, 93 (7), 256–271. doi:10.1016/j.isprsjprs.2013.10.004
  • Sampath, A. and Shan, J., 2007. Building boundary tracing and regularization from airborne LiDAR point clouds. Photogrammetric Engineering & Remote Sensing, 73 (7), 805–812. doi:10.14358/PERS.73.7.805
  • Sampath, A. and Shan, J., 2010. Segmentation and reconstruction of polyhedral building roofs from aerial LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing, 48 (3), 1554–1567. doi:10.1109/TGRS.2009.2030180
  • Shewchuk, J.R., 2002. Delaunay refinement algorithms for triangular mesh generation. Computational Geometry, 22 (1–3), 21–74. doi:10.1016/S0925-7721(01)00047-5
  • Stroud, I., 2006. Boundary representation modelling techniques. London: Springer-Verlag London.
  • Toth, C. and Jóźków, G., 2016. Remote sensing platforms and sensors: a survey. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 22–36. doi:10.1016/j.isprsjprs.2015.10.004
  • van Oosterom, P., et al., 2015. Realistic benchmarks for point cloud data management systems. Available from: http://www.gdmc.nl:8080/mpc/documents/papers/realistic-benchmarks-for-point-cloud-data-management-systems/view [Accessed 21 July 2016].
  • Verma, V., Kumar, R., and Hsu, S., 2006. 3D building detection and modeling from aerial LIDAR data. In: A. Fitzgibbon, C.J. Taylor, and Y. LeCun, eds. 2006 IEEE computer society conference on computer vision and pattern recognition, 17-22 June 2006, New York, NY. IEEE, 2213–2220. doi:10.1109/CVPR.2006.12
  • Vosselman, G. and Dijkman, E., 2001. 3D building model reconstruction from point clouds and ground plans. International Archives of Photogrammetry and Remote Sensing, XXXIV-3/W4, 37–43.
  • Vosselman, G. and Gorte, B., 2004. Recognising structure in laser scanner point clouds. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVI-8/W2, 33–38.
  • Wang, J. and Shan, J., 2009. Segmentation of LiDAR point clouds for building extraction. In: ASPRS 2009 annual conference, 9-13 March 2009, Baltimore, Maryland. Available from: https://engineering.purdue.edu/~jshan/publications/2009/ASPRS_2009_Lidar.pdf
  • Xiong, B., Oude Elberink, S., and Vosselman, G., 2014. A graph edit dictionary for correcting errors in roof topology graphs reconstructed from point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 93, 227–242. doi:10.1016/j.isprsjprs.2014.01.007
  • Xiong, B., et al., 2015. Flexible building primitives for 3D building modeling. ISPRS Journal of Photogrammetry and Remote Sensing, 101, 275–290. doi:10.1016/j.isprsjprs.2015.01.002
  • Xu, L., Kong, D., and Li, X., 2014. On-the-fly extraction of polyhedral buildings from airborne LiDAR data. IEEE Geoscience and Remote Sensing Letters, 11 (11), 1946–1950. doi:10.1109/LGRS.2014.2314458
  • Zhang, K., Yan, J., and Chen, S.C., 2006. Automatic construction of building footprints from airborne LiDAR data. IEEE Transactions on Geoscience and Remote Sensing, 44 (9), 2523–2533. doi:10.1109/TGRS.2006.874137
  • Zhou, Q. and Neumann, U., 2008. Fast and extensible building modeling from airborne LiDAR data. In: Proceedings of the 16th ACM SIGSPATIAL international conference on advances in geographic information systems, 5-7 November 2008 Irvine, CA. New York, NY: ACM, 1–7. doi: 10.1145/1463434.1463444
  • Zhao, Z., et al., 2016. Extracting buildings from and regularizing boundaries in airborne LiDAR data using connected operators. International Journal of Remote Sensing, 37 (4), 889–912. doi:10.1080/01431161.2015.1137647

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.