503
Views
12
CrossRef citations to date
0
Altmetric
Article

Evaluation of a spatially adaptive approach for land surface classification from digital elevation models

ORCID Icon &
Pages 1978-2000 | Received 14 Feb 2017, Accepted 18 Jun 2017, Published online: 02 Jul 2017

References

  • Anders, N.S., Seijmonsbergen, A.C., and Bouten, W., 2011. Segmentation optimization and stratified object-based analysis for semi-automated geomorphological mapping. Remote Sensing of Environment, 115 (12), 2976–2985. doi:10.1016/j.rse.2011.05.007
  • Anders, N.S., Seijmonsbergen, A.C., and Bouten, W., 2015. Rule set transferability for object-based feature extraction: an example for cirque mapping. Photogrammetric Engineering and Remote Sensing, 81 (6), 507–514. doi:10.14358/PERS.81.6.507
  • Argialas, D.P., 1995. Towards structured-knowledge models for landform representation. Zeitschrift Für Geomorphologie. N.F. Supplementband, 101, 85–108.
  • Barringer, J.R.F., et al., 2008. National mapping of landform elements in support of S-map, a New Zealand soils database. In: Q. Zhou, B. Lees, and G. Tang, eds. Advances in digital terrain analysis. Berlin: Springer-Verlag, 443–45810.1007/978-3-540-77800-4_24
  • Bian, L., 1997. Multi-scale nature of spatial data in scaling up environmental models. In: D. Quattrochi and M. Goodchild, eds. Scale in remote sensing and GIS. Boca Raton: CRC Press, 13–26.
  • Bishop, M.P., et al., 2012. Geospatial technologies and digital geomorphological mapping: concepts, issues and research. Geomorphology, 137, 5–26. doi:10.1016/j.geomorph.2011.06.027
  • Burrough, P.A., van Gaans, P.F., and MacMillan, R.A., 2000. High resolution landform classification using fuzzy k-means. Fuzzy Sets Systems, 113, 37–52. doi:10.1016/S0165-0114(99)00011-1
  • Cheng, T., Fisher, P., and Li, Z., 2004. Double vagueness: effect of scale on the modelling of fuzzy spatial objects. In: P. Fisher, ed. Developments in spatial data handling. Berlin: Springer, 299–313. doi:10.1007/3-540-26772-7_23
  • Dehn, M., Gartner, H., and Dikau, R., 2001. Principles of semantic modeling of landform structures. Computers and Geosciences, 27, 1005–1010. doi:10.1016/S0098-3004(00)00138-2
  • Deng, Y., Wilson, J.P., and Bauer, B.O., 2007. DEM resolution dependencies of terrain attributes across a landscape. International Journal of Geographical Information Science, 21 (1–2), 187–213. doi:10.1080/13658810600894364
  • Dikau, R., 1989. The application of a digital relief model to landform analysis in geomorphology. In: J. Raper, ed. Three dimensional application in geographic information systems. London: Taylor & Francis, 51–77.
  • Drăguţ, L. and Blaschke, T., 2006. Automated classification of landform elements using object-based image analysis. Geomorphology, 81, 330–344. doi:10.1016/j.geomorph.2006.04.013
  • Drăguţ, L. and Blaschke, T., 2008. Terrain segmentation and classification using SRTM data. In: Q. Zhou, B. Lees, and G. Tang, eds. Advances in digital terrain analysis. Berlin: Springer, 141–158. doi:10.1007/978-3-540-77800-4_8
  • Drăguţ, L. and Eisank, C., 2011. Object representations at multiple scales from digital elevation models. Geomorphology, 129 (3–4), 183–189. doi:10.1016/j.geomorph.2011.03.003
  • Drăguţ, L. and Eisank, C., 2012. Automated object-based classification of topography from SRTM data. Geomorphology, 141–142 (1), 21–33. doi:10.1016/j.geomorph.2011.12.001
  • Drăguţ, L., Eisank, C., and Strasser, T., 2011. Local variance for multi-scale analysis in geomorphometry. Geomorphology, 130 (3–4), 162–172. doi:10.1016/j.geomorph.2011.03.011
  • Drăguţ, L., Tiede, D., and Levick, S.R., 2010. ESP: a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. International Journal of Geographical Information Science, 24 (6), 859–871. doi:10.1080/13658810903174803
  • Dramis, F., Guida, D., and Cestari, A., 2011. Nature and aims of geomorphological mapping. In: M. Smith, P. Paron, and J. Griffiths, eds. Geomorphological mapping: methods and applications. Amsterdam: Elsevier, 39–73. doi:10.1016/B978-0-444-53446-0.00003-3
  • Eisank, C., Drăguţ, L., and Blaschke, T., 2011. A generic procedure for semantics-oriented landform classification using object-based image analysis. In: T. Hengl, et al., eds. Geomorphometry 2011. Redlands, CA, USA, 125–128.
  • Evans, I.S., 1972. General geomorphometry, derivatives of altitude, and descriptive statistics. In: R.J. Chorley, ed. Spatial analysis in geomorphology. London: Methuen & Co. Ltd, 17–90.
  • Evans, I.S., 1979. Statistical characterization of altitude matrices by computer. An integrated system of terrain analysis and slope mapping. Durham, UK: Department of Geography, University of Durham.
  • Evans, I.S., 1990. General geomorphometry. In: A.S. Goudie, et al., eds. Geomorphological techniques. London: Unwin Hyman, 44–56.
  • Evans, I.S., 2011. Geomorphometry and landform mapping: what is a landform? Geomorphology, 137 (1), 94–106. doi:10.1016/j.geomorph.2010.09.029
  • Florinsky, I.V., 1998a. Combined analysis of digital terrain models and remotely sensed data in landscape investigations. Progress in Physical Geography, 22, 33–60. doi:10.1177/030913339802200102
  • Florinsky, I.V., 1998b. Accuracy of local topographic variables derived from digital elevation models. International Journal of Geographical Information Science, 12, 47–61. doi:10.1080/136588198242003
  • Frank, A., Palmer, B., and Robinson, V.B., 1986. Formal methods for the accurate definition of some fundamental terms in physical geography. Second International Symposium on Spatial Data Handling, Seattle. New York, USA: International Geographical Union Commission on Geographical Data Sensing and Processing, 583–599.
  • Gerçek, D., Toprak, V., and Strobl, J., 2011. Object-based classification of landforms based on their local geometry and geomorphometric context. International Journal of Geographical Information Science, 25 (6), 1011–1023. doi:10.1080/13658816.2011.558845
  • Gorini, M.A.V. and Mota, G.L.A., 2016. Dealing with double vagueness in DEM morphometric analysis. International Journal of Geographical Information Science, 30 (8), 1644–1666. doi:10.1080/13658816.2016.1150484
  • Hay, G., et al., 2003. A comparison of three image-object methods for the multiscale analysis of landscape structure. ISPRS Journal of Photogrammetry and Remote Sensing, 57 (5), 327–345. doi:10.1016/S0924-2716(02)00162-4
  • Hay, G.J. and Castilla, G., 2008. Geographic object-based image analysis (GEOBIA): a new name for a new discipline. In: T. Blaschke, S. Lang, and G.J. Hay, eds. Object-based image analysis. Berlin: Springer, 75–89. doi:10.1007/978-3-540-77058-9_4
  • Hengl, T. and Reuter, H.I., 2009. Geomorphometry—concepts, software, applications. Amsterdam: Elsevier.
  • Jasiewicz, J. and Stepinski, T., 2013. Geomorphons – a pattern recognition approach to classification and mapping of landforms. Geomorphology, 182, 147–156. doi:10.1016/j.geomorph.2012.11.005
  • Kienzle, S., 2004. The effect of DEM raster resolution on first order, second order and compound terrain derivatives. Transactions in GIS, 8, 83–111. doi:10.1111/j.1467-9671.2004.00169.x
  • Lam, -N.S.-N. and Quattrochi, D.A., 1992. On the issues of scale, resolution, and fractal analysis in the mapping sciences. Professional Geographer, 44, 88–98. doi:10.1111/j.0033-0124.1992.00088.x
  • Li, Z., 2008. Multi-scale digital terrain modelling and analysis. In: Q. Zhou, B. Lees, and G. Tang, eds. Advances in digital terrain analysis. Berlin: Springer, 59–83. doi:10.1007/978-3-540-77800-4_4
  • MacMillan, R.A., et al., 2000. A generic procedure for automatically segmenting landforms into landform elements using DEMs, heuristic rules and fuzzy logic. Fuzzy Sets Systems, 113, 81–109. doi:10.1016/S0165-0114(99)00014-7
  • MacMillan, R.A. and Shary, P.A., 2009. Landforms and landform elements in geomorphometry. In: T. Hengl and H.I. Reuter, eds. Geomorphometry—concepts, software, applications. Amsterdam: Elsevier, 227–254. doi:10.1016/S0166-2481(08)00009-3
  • Minár, J. and Evans, I.S., 2008. Elementary forms for land surface segmentation: the theoretical basis of terrain analysis and geomorphological mapping. Geomorphology, 95, 236–259. doi:10.1016/j.geomorph.2007.06.003
  • Nagy, G., 1994. Terrain visibility. Computers & Graphics, 18, 763–773. doi:10.1016/0097-8493(94)90002-7
  • Oguchi, T., Hayakawa, Y., and Wasklewicz, T., 2011. Data sources. In: M.J. Smith, P. Paron, and J. Griffiths, eds. Geomorphological mapping: a handbook of techniques and applications. Amsterdam: Elsevier, 189–224. doi:10.1016/B978-0-444-53446-0.00007-0
  • Pike, R.J., 1993. A bibliography of geomorphometry. Menlo Park: United States Geological Survey.
  • Pike, R.J., Evans, I.S., and Hengl, T., 2009. Geomorphometry: a brief guide. In: T. Hengl and H.I. Reuter, eds. Geomorphometry—concepts, software, applications. Amsterdam: Elsevier, 3–30. doi:10.1016/S0166-2481(08)00001-9
  • Romstad, B. and Etzelmüller, B., 2012. Mean-curvature watersheds: a simple method for segmentation of a digital elevation model into terrain units. Geomorphology, 139–140 (15), 293–302. doi:10.1016/j.geomorph.2011.10.031
  • Schmidt, J. and Andrew, R., 2005. Multi-scale landform characterization. Area, 37, 341–350. doi:10.1111/j.1475-4762.2005.00638.x
  • Schmidt, J. and Hewitt, A., 2004. Fuzzy land element classification from DTMs based on geometry and terrain position. Geoderma, 121, 243–256. doi:10.1016/j.geoderma.2003.10.008
  • Shary, P.A., 2008. Models of topography. In: Q. Zhou, B. Lees, and G. Tang, eds. Advances in digital terrain analysis. Berlin: Springer, 29–57. doi:10.1007/978-3-540-77800-4_3
  • Shary, P.A., Sharaya, L.S., and Mitusov, A.V., 2002. Fundamental quantitative methods of land surface analysis. Geoderma, 107, 1–32. doi:10.1016/S0016-7061(01)00136-7
  • Smith, M.J., 2011. Digital mapping: visualisation, interpretation and quantification of landforms. In: M.J. Smith, P. Paron, and J. Griffiths, eds. Geomorphological mapping: a handbook of techniques and applications. Amsterdam: Elsevier, 225–251. doi:10.1016/B978-0-444-53446-0.00008-2
  • Strobl, J., 2008. Segmentation-based terrain classification. In: Q. Zhou, B. Lees, and G. Tang, eds. Advances in digital terrain analysis. Berlin: Springer, 125–139. doi:10.1007/978-3-540-77800-4_7
  • Torres-Sánchez, J., López-Granados, F., and Peña, J.M., 2015. An automatic object-based method for optimal thresholding in UAV images: application for vegetation detection in herbaceous crops. Computers and Electronics in Agriculture, 114, 43–52. doi:10.1016/j.compag.2015.03.019
  • Trimble, 2014. eCognition Developer; version 9.0. Munich, Germany: Trimble.
  • Van Niekerk, A., 2010. A comparison of land unit delineation techniques for land evaluation in the Western Cape, South Africa. Land Use Policy, 27 (3), 937–945. doi:10.1016/j.landusepol.2009.12.007
  • Wilson, J. and Gallant, J., 2000. Terrain analysis: principles and applications. Chichester: Wiley.
  • Wood, J., 1996. The geomorphological characterisation of digital elevation models. Thesis (PhD). University of Leicester, UK. https://lra.le.ac.uk/handle/2381/34503
  • Wood, J.D., 2009. Geomorphometry in LandSerf. In: T. Hengl and H.I. Reuter, eds. Geomorphometry—concepts, software, applications. Amsterdam: Elsevier, 333–349. doi:10.1016/S0166-2481(08)00014-7
  • Woodcock, C. and Strahler, A., 1987. The factor of scale in remote sensing. Remote Sensing of Environment, 21 (3), 311–332. doi:10.1016/0034-4257(87)90015-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.