862
Views
13
CrossRef citations to date
0
Altmetric
Article

An artificial bee colony-based multi-objective route planning algorithm for use in pedestrian navigation at night

, , , , &
Pages 2020-2044 | Received 25 Oct 2016, Accepted 21 Jun 2017, Published online: 02 Jul 2017

References

  • Afzal, M.H., 2011. Use of earth’s magnetic field for pedestrian navigation. Thesis (PhD). University Of Calgary.
  • Akasaka, Y. and Onisawa, T., 2008. Personalized pedestrian navigation system with subjective preference based route selection. In: D. Ruan, F. Hardenman, and K. van de Meer, eds. Intelligent decision and policy making support systems, studies in computational intelligence. Vol. 117. Berlin Heidelberg: Springer-Verlag, 73–91. doi:10.1007/978-3-540-78308-4_5
  • Asadi-Shekari, Z., Moeinaddini, M., and Shah, M., 2015. Pedestrian safety index for evaluating street facilities in urban areas. Safety Science, 74, 1–14. doi:10.1016/j.ssci.2014.11.014
  • Basiri, A., et al., 2016. Seamless pedestrian positioning and navigation using landmarks. The Journal of Navigation, 69 (1), 24–40. doi:10.1017/S0373463315000442
  • Bast, H., et al., 2007. Fast routing in road networks with transit nodes. Science, 316 (5824), 566. doi:10.1126/science.1137521
  • Caduff, D., et al., 2005. The landmark spider: representing landmark knowledge for wayfinding Tasks. In: T. Barkowsky, eds. Technical Report SS-05-06. Reasoning with mental and external diagrams: computational modeling and spatial assistance Vol. 2005. AAAI Press: Stanford, CA, 30–35.
  • Cervero, R., 2006. Alternative approaches to modeling the travel-demand impacts of smart growth. Journal of the American Planning Association, 72 (3), 285–295. doi:10.1080/01944360608976751
  • Coello, C., Van Veldhuizen, D., and Lamont, G., 2002. Evolutionary algorithms for solving multi-objective problems. New York: Springer Science+Business Media, LLC.
  • Delikostidis, I., et al., 2013. Increasing the usability of pedestrian navigation interfaces by means of landmark visibility analysis. The Journal of Navigation, 66 (4), 523–537. doi:10.1017/S0373463313000209
  • Delikostidis, I., van Elzakker, C., and Kraak, M.-J., 2016. Overcoming challenges in developing more usable pedestrian navigation systems. Cartography and Geographic Information Science, 43 (3), 189–207. doi:10.1080/15230406.2015.1031180
  • Dijkstra, E.W., 1959. A note on two problems in connexion with graphs. Numerische Mathematik, 1 (1), 269–271. doi:10.1007/BF01386390
  • Dorigo, M., 1992. Optimization, Learning and Natural Algorithms. Thesis (PhD). Politecnico di Milano, Italy.
  • Duckham, M., Winter, S., and Robinson, M., 2010. Including landmarks in routing instructions. Journal of Location Based Services, 4 (1), 28–52. doi:10.1080/17489721003785602
  • Dunai, L., et al., 2013. Sensory navigation device for blind people. The Journal of Navigation, 66, 349–362. doi:10.1017/S0373463312000574
  • Fang, Z., et al., 2012. A GIS data model for landmark-based pedestrian navigation. International Journal of Geographical Information Science, 26 (5), 817–838. doi:10.1080/13658816.2011.615749
  • Fang, Z., Li, Q., and Shaw, S.-L., 2015. What about people in pedestrian navigation? Geo-Spatial Information Science, 18 (4), 135–150. doi:10.1080/10095020.2015.1126071
  • Fang, Z., Li, Q., and Zhang, X., 2011. A multiobjective model for generating optimal landmark sequences in pedestrian navigation applications. International Journal of Geographical Information Science, 25 (5), 785–805. doi:10.1080/13658816.2010.500290
  • Fischer, C. and Gellersen, H., 2010. Location and navigation support for emergency responders: A survey. IEEE Pervasive Computing, 9 (1), 38–47. doi:10.1109/MPRV.2009.91
  • Goldberg, D.E., 1989. Genetic algorithms in search, optimization, and machine learning. Boston: Addison-Wesley Longman Publishing Co., Inc.
  • Guy, S.J., et al. 2012. A statistical similarity measure for aggregate crowd dynamics. In : ACM Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH Asia 2012. Vol. 6, New York: ACM, 31. Article No. 190. doi:10.1145/2366145.2366209
  • Hart, P.E., Nilsson, N., and Raphael, B., 1968. A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4 (2), 100–107. doi:10.1109/TSSC.1968.300136
  • Hile, H., et al., 2008. Landmark-based pedestrian navigation from collections of geotagged photos. Proceedings of the 7th International Conference on Mobile and Ubiquitous Multimedia, Umeå, Sweden. ACM: New York, December 3–5, 2008, 145–152.doi: 10.1145/1543137.1543167
  • Hochmair, H., 2005. Towards a classification of route selection criteria for route planning tools. In: P. Fisher eds. Developments in Spatial Data Handling, 11th International Symposium on Spatial Data Handling. Berlin Heidelberg: Springer-Verlag, 481–492.doi: 10.1007/3-540-26772-7_37
  • Hölscher, C., Tenbrink, T., and Wiener, J., 2011. Would you follow your own route description? Cognitive strategies in urban route planning. Cognition, 121 (2), 228–247. doi:10.1016/j.cognition.2011.06.005
  • Hoogendoorn, S. and Bovy, P., 2004. Pedestrian route-choice and activity scheduling theory and models. Transportation Research Part B: Methodological, 38 (2), 169–190. doi:10.1016/S0191-2615(03)00007-9
  • Jensen, S., 1999. Pedestrian safety in Denmark. Transportation Research Record: Journal of the Transportation Research Board, 1674, 61–69. doi:10.3141/1674-09
  • Jiang, B. and Liu, X., 2011. Computing the fewest-turn map directions based on the connectivity of natural roads. International Journal of Geographical Information Science, 25 (7), 1069–1082. doi:10.1080/13658816.2010.510799
  • Karaboga, D. 2005. An idea based on honey bee swarm for numerical optimization. Technical report. Computer Engineering Department, Engineering Faculty, Erciyes University. Available from: https://mf.erciyes.edu.tr/abc/pub/tr06_2005.pdf  [Accessed June 2017]
  • Karaboga, D. and Akay, B., 2009. A comparative study of Artificial Bee Colony algorithm. Applied Mathematics and Computation, 214 (1), 108–132. doi:10.1016/j.amc.2009.03.090
  • Karaboga, D. and Basturk, B., 2007. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39 (3), 459–471. doi:10.1007/s10898-007-9149-x
  • Karaboga, D., Gorkemli, B., and Ozturk, C., 2014. A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artificial Intelligence Review, 42 (1), 21–57. doi:10.1007/s10462-012-9328-0
  • Li, Y. and Wang, J., 2014. A pedestrian navigation system based on low cost IMU. The Journal of Navigation, 67, 929–949. doi:10.1017/S0373463314000344
  • Maslow, A.H., 1943. A theory of human motivation. Psychological Review, 50 (4), 370–396. doi:10.1037/h0054346
  • May, A., et al., 2003. Pedestrian navigation aids: information requirements and design implications. Personal and Ubiquitous Computing, 7 (6), 331–338. doi:10.1007/s00779-003-0248-5
  • Millonig, A., et al., 2005. Decision loads and route qualities for pedestrian key requirements for the design of pedestrian navigation services. In: N. Waldau, eds. Pedestrian and evacuation dynamics. Berlin: Springer-Verlag, 109–118. doi:10.1007/978-3-540-47064-9_10
  • Moussaïd, M., et al., 2010. The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PLoS ONE, 5 (4), e10047. doi:10.1371/journal.pone.0010047
  • Nasar, J., Hecht, P., and Wener, R., 2008. Mobile telephones, distracted attention, and pedestrian safety. Accident Analysis & Prevention, 40 (1), 69–75. doi:10.1016/j.aap.2007.04.005
  • Natapov, A. and Fisher-Gewirtzman, D., 2016. Visibility of urban activities and pedestrian routes: an experiment in a virtual environment. Computers, Environment and Urban Systems, 58, 60–70. doi:10.1016/j.compenvurbsys.2016.03.007
  • Ohm, C., et al., 2016. Towards interfaces of mobile pedestrian navigation systems adapted to the user’s orientation skills. Pervasive and Mobile Computing, 26, 121–134. doi:10.1016/j.pmcj.2015.10.006
  • Rehrl, K., Bruntsch, S., and Mentz, H.-J., 2007. Assisting multimodal travelers: design and prototypical implementation of a personal travel companion. IEEE Transactions on Intelligent Transportation Systems, 8 (1), 31–42. doi:10.1109/TITS.2006.890077
  • Retscher, G., 2007. Test and integration of location sensors for a multi-sensor personal navigator. The Journal of Navigation, 60 (1), 107–117. doi:10.1017/S037346330700402X
  • Schneider, M., 1959. Gravity models and trip distribution theory. Regional Science, 5 (1), 51–56. doi:10.1111/j.1435-5597.1959.tb01665.x
  • Schougaard, K., Grønbæk, K., and Scharling, T., 2012. Indoor pedestrian navigation based on hybrid route planning and location modeling. In: J. Kay, et al., eds. Pervasive computing, lecture notes in computer science. Berlin, Heidelberg: Springer-Verlag, Vol. 7319, 289–306. doi: 10.1007/978-3-642-31205-2_18
  • Schroder, C., Mackaness, W., and Gitting, B., 2011. Giving the ‘right’ route directions: the requirements for pedestrian navigation systems. Transactions in GIS, 15 (3), 419–438. doi:10.1111/j.1467-9671.2011.01266.x
  • Seyfried, A., et al., 2010. Enhanced empirical data for the fundamental diagram and the flow through bottlenecks. Pedestrian and Evacuation Dynamics, 2008, 145–156. Available from: https://arxiv.org/abs/0810.1945 [Accessed May 2017].
  • Singh, R., 2016. Factors affecting walkability of neighborhoods. Procedia-Social and Behavioral Sciences, 216, 643–654. doi:10.1016/j.sbspro.2015.12.048
  • Winter, S., 2001.Weighting the path continuation in route planning. In: Proceedings of the 9th ACM international symposium on Advances in geographic information systems, Atlanta, Georgia, USA, November 09-10, New York: ACM, 173–176.doi: 10.1145/512161.512199
  • Winter, S., 2002. Modeling costs of turns in route planning. GeoInformatica, 6 (4), 345–361. doi:10.1023/A:1020853410145
  • Xia, J., et al., 2008. The wayfinding process relationships between decision-making and landmark utility. Toursim Management, 29, 445–457. doi:10.1016/j.tourman.2007.05.010
  • Yu, H. and Lu., F., 2012. A multi-modal route planning approach with an improved genetic algorithm. In:W. Shi., et al., eds. Advances in geo-spatial information science. London: Taylor & Francis Group, 193–204. Available from: www.isprs.org/proceedings/XXXVIII/part2/Papers/85_Paper.pdf [Accessed May 2017].
  • Yusof, T., et al., 2015. Path planning for visually impaired people in an unfamiliar environment using particle swarm optimization. Procedia Computer Science, 76, 80–86. doi:10.1016/j.procs.2015.12.281
  • Zacharias, J., 2001. Pedestrian behavior pedestrian behavior and perception in urban walking environments. Journal of Planning Literature, 16 (1), 3–18. doi:10.1177/08854120122093249
  • Zhang, X., et al., 2013. Landmark and branch-based pedestrian route complexity and selection algorithm. Geomatics and Information Science of Wuhan University, 38(10), 1239–1242. Available from: http://en.cnki.com.cn/Journal_en/A-A008-WHCH-2013-10.htm [Accessed May 2017].
  • Zhang, X., et al., 2014. An assessment method for landmark recognition time in real scenes. Journal of Environmental Psychology, 40, 206–217. doi:10.1016/j.jenvp.2014.06.008
  • Zhou, B., et al., 2014. Measuring crowd collectiveness. IEEE Transaction on Pattern Analysis and Machine Intelligence, 36 (8), 1586–1599. doi:10.1109/CVPR.2013.392

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.