822
Views
34
CrossRef citations to date
0
Altmetric
Article

A high-performance cellular automata model for urban simulation based on vectorization and parallel computing technology

, , &
Pages 399-424 | Received 13 Mar 2017, Accepted 05 Oct 2017, Published online: 20 Oct 2017

References

  • Abouali, M., Daneshvar, F., and Nejadhashemi, A.P., 2016. MATLAB Hydrological Index Tool (MHIT): A high performance library to calculate 171 ecologically relevant hydrological indices. Ecological Informatics, 33, 17–23. doi:10.1016/j.ecoinf.2016.03.004
  • Blecic, I., Cecchini, A., and Trunfio, G.A., 2013. Cellular automata simulation of urban dynamics through GPGPU. The Journal of Supercomputing, 65 (2), 614–629. doi:10.1007/s11227-013-0913-z
  • Blecic, I., Cecchini, A., and Trunfio, G.A., 2014. Training cellular automata to simulate urban dynamics: a computational study based on GPGPU and swarm intelligence. In: 11th International Conference on Cellular Automata for Research and Industry, 22–25 September 2014 Poland. Kraków: Springer International Publishing, 300–309. doi:10.1007/978-3-319-11520-7_31
  • Blecic, I., Cecchini, A., and Trunfio, G.A., 2015. How much past to see the future: a computational study in calibrating urban cellular automata. International Journal of Geographical Information Science, 29 (3), 349–374. doi:10.1080/13658816.2014.970190
  • Cannataro, M., et al., 1995. A parallel cellular automata environment on multicomputers for computational science. Parallel Computing, 21 (5), 803–823. doi:10.1016/0167-8191(94)00099-V
  • Cuvelier, F., Japhet, C., and Scarella, G., 2014. An efficient way to assemble finite element matrices in vector languages. Bit Numerical Mathematics, 1–32. doi:10.1007/s10543-015-0587-4
  • Ghisu, T., et al., 2015. An optimal cellular automata algorithm for simulating wildfire spread. Environmental Modelling & Software, 71 (C), 1–14. doi:10.1016/j.envsoft.2015.05.001
  • Guan, Q. and Clarke, K.C., 2010. A general-purpose parallel raster processing programming library test application using a geographic cellular automata model. International Journal of Geographical Information Science, 24 (5), 695–722. doi:10.1080/13658810902984228
  • Guan, Q., et al., 2016. A hybrid parallel cellular automata model for urban growth simulation over GPU/CPU heterogeneous architectures. International Journal of Geographical Information Science, 30 (3), 494–514. doi:10.1080/13658816.2015.1039538
  • He, C., et al., 2013b. Modeling the urban landscape dynamics in a megalopolitan cluster area by incorporating a gravitational field model with cellular automata. Landscape & Urban Planning, 113 (113), 78–89. doi:10.1016/j.landurbplan.2013.01.004
  • He, Q., et al., 2013a. An unsupervised classifier for remote-sensing imagery based on improved cellular automata. International Journal of Remote Sensing, 34 (21), 7821–7837. doi:10.1080/01431161.2013.822596
  • Hutchinson, D., et al., 1996. Parallel neighbourhood modelling. In: 4th ACM international workshop on advances in geographic information systems, 15–16 November 1996 USA. Rockville: ACM New York, 25–34. doi:10.1145/258319.258328
  • Karafyllidis, I. and Thanailakis, A., 1997. A model for predicting forest fire spreading using cellular automata. Ecological Modelling, 99 (1), 87–97. doi:10.1016/S0304-3800(96)01942-4
  • Kitchin, R., 2013. Big data and human geography opportunities, challenges and risks. Dialogues in Human Geography, 3 (3), 262–267. doi:10.1177/2043820613513388
  • Lauret, P., et al., 2016. Atmospheric dispersion modeling using Artificial Neural Network based cellular automata. Environmental Modelling & Software, 85, 56–69. doi:10.1016/j.envsoft.2016.08.001
  • Li, X., et al., 2017a. A new global land-use and land-cover change product at a 1-km resolution for 2010 to 2100 based on human–environment interactions. Annals of the American Association of Geographers, 107 (5), 1040–1059. doi:10.1080/24694452.2017.1303357
  • Li, X., et al., 2017b. Experiences and issues of using cellular automata for assisting urban and regional planning in China. International Journal of Geographical Information Science, 31 (8), 1606–1629. doi:10.1080/13658816.2017.1301457
  • Li, X., Yang, Q., and Liu, X., 2008. Discovering and evaluating urban signatures for simulating compact development using cellular automata. Landscape & Urban Planning, 86 (2), 177–186. doi:10.1016/j.landurbplan.2008.02.005
  • Li, X. and Yeh, A.G.O., 2000. Modelling sustainable urban development by the integration of constrained cellular automata and GIS. International Journal of Geographical Information Science, 14 (2), 131–152. doi:10.1080/136588100240886
  • Li, X., et al., 2010. Parallel cellular automata for large-scale urban simulation using load-balancing techniques. International Journal of Geographical Information Science, 24 (6), 803–820. doi:10.1080/13658810903107464
  • Liao, J., et al., 2014. A neighbor decay cellular automata approach for simulating urban expansion based on particle swarm intelligence. International Journal of Geographical Information Science, 28 (4), 720–738. doi:10.1080/13658816.2013.869820
  • Norman, M.G., et al., 1991. The use of the CAPE environment in the simulation of rock fracturing. Concurrency: Practice and Experience, 3 (6), 687–698. doi:10.1002/cpe.4330030612
  • Rodríguez, J.I., et al., 2009. A high performance grid-based algorithm for computing QTAIM properties. Chemical Physics Letters, 472 (1–3), 149–152. doi:10.1016/j.cplett.2009.02.081
  • Santé, I., et al., 2010. Cellular automata models for the simulation of real-world urban processes: a review and analysis. Landscape & Urban Planning, 96 (2), 108–122. doi:10.1016/j.landurbplan.2010.03.001
  • Tim, S., Martin, D., and MeiPo, K., 2013. Introduction-the Internet, changing mobilities, and urban dynamics. Urban Geography, 27 (7), 585–589. doi:10.2747/0272-3638.27.7.585
  • Volkov, V. and Demmel, J.W., 2008. Benchmarking GPUs to tune dense linear algebra. In: High Performance Computing, Networking, Storage and Analysis, 15–21 November 2008 USA. Austin: IEEE, 1–11. doi:10.1109/SC.2008.5214359
  • Wang, H., et al., 2013. Simulating urban expansion using a cloud-based cellular automata model: A case study of Jiangxia, Wuhan, China. Landscape & Urban Planning, 110 (1), 99–112. doi:10.1016/j.landurbplan.2012.10.016
  • Wu, F., 2002. Calibration of stochastic cellular automata: the application to rural-urban land conversions. International Journal of Geographical Information Science, 16 (8), 795–818. doi:10.1080/13658810210157769
  • Zhang, X., Qian, W., and Zhang, Y., 2012. Model-driven level 3 BLAS performance optimization on Loongson 3A processor. In: IEEE, 18th International Conference on Parallel and Distributed Systems, 17–19 December 2012. Singapore: IEEE Computer Society, 684–691. doi:10.1109/ICPADS.2012.97

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.