1,025
Views
25
CrossRef citations to date
0
Altmetric
Article

A meta-modeling approach for spatio-temporal uncertainty and sensitivity analysis: an application for a cellular automata-based Urban growth and land-use change model

ORCID Icon, , ORCID Icon, &
Pages 637-662 | Received 06 May 2017, Accepted 15 Nov 2017, Published online: 29 Nov 2017

References

  • Abily, M., et al., 2016. Spatial global sensitivity analysis of high resolution classified topographic data use in 2D urban flood modelling. Environmental Modelling and Software, 77, 183–195. doi:10.1016/j.envsoft.2015.12.002
  • Armstrong, M. and Matheron, G., 1986. Isofactorial models for granulodensimetric data. Mathematical Geology, 18 (8), 743–757. doi:10.1007/BF00899741
  • Bilotta, G., et al., 2012. Sensitivity analysis of the MAGFLOW cellular automaton model for lava flow simulation. Environmental Modelling & Software, 35, 122–131. doi:10.1016/j.envsoft.2012.02.015
  • Burnaev, E., Panin, I., and Sudret, B., 2017. Efficient design of experiments for sensitivity analysis based on polynomial chaos expansions. Annals of Mathematics and Artificial Intelligence, 81 (1–2), 187–207. doi:10.1007/s10472-017-9542-1
  • Candau, J., Rasmussen, S., and Clarke, K.C., 2000. A coupled cellular automaton model for land use/land cover dynamics. In 4th International Conference on Integrating GIS and Environmental Modeling. Banff, Alberta.Canada.
  • Chaudhuri, G. and Clarke, K.C., 2013. The SLEUTH land use change model: a review. The International Journal of Environmental Resources Research, 1 (1), 88–104.
  • Chen, Q. and Mynett, A.E., 2003. Effects of cell size and configuration in cellular automata based prey-predator modelling. Simulation Modelling Practice and Theory, 11 (7–8), 609–625. doi:10.1016/j.simpat.2003.08.006
  • Chen, Y., Yu, J., and Khan, S., 2010. Spatial sensitivity analysis of multi-criteria weights in GIS-based land suitability evaluation. Environmental Modelling and Software, 25 (12), 1582–1591. doi:10.1016/j.envsoft.2010.06.001
  • Chiles, J.P. and Delfiner, P., 1999. Geostatistics: modeling spatial uncertainty. New York: Wiley.
  • Clarke, K.C., et al., 2007. A decade of SLEUTHing: lessons learned from applications of a cellular automaton land use change model. In: P. Fisher, ed. Classics in IJGIS Twenty Years of the International Journal of Geographical Information Science and Systems. Boca Raton, FL: Taylor and Francis, CRC, 413–425.
  • Clarke, K.C., 2008. A decade of cellular urban modeling with SLEUTH: unresolved issues and problems. In: R.K. Brail, ed. Planning support systems for cities and regions. Cambridge, MA: Lincoln Institute of Land Policy, Chapter 3, 47–60.
  • Clarke, K.C., Gaydos, L., and Hoppen, S., 1997. A self-modifying cellular automaton model of historical urbanization in the San Francisco bay area. Environment and Planning B, 24, 247–261. doi:10.1068/b240247
  • Couclelis, H., 1985. Cellular worlds: a framework for modeling micro - macro dynamics. Environment and Planning A, 17 (5), 585–596. doi:10.1068/a170585
  • Crestaux, T., Le Maître, O., and Martinez, J.M., 2009. Polynomial chaos expansion for sensitivity analysis. Reliability Engineering and System Safety, 94 (7), 1161–1172. doi:10.1016/j.ress.2008.10.008
  • Crosetto, M. and Tarantola, S., 2001. Uncertainty and sensitivity analysis: tools for GIS-based model implementation. International Journal of Geographical Information Science, 15 (5), 415–437. doi:10.1080/13658810110053125
  • Crosetto, M., Tarantola, S., and Saltelli, A., 2000. Sensitivity and uncertainty analysis in spatial modelling based on GIS. Agriculture, Ecosystems & Environment, 81 (1), 71–79. doi:10.1016/S0167-8809(00)00169-9
  • Cukier, R.I., et al. 1973. Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients: I theory. The Journal of Chemical Physics, 59 (8), 3873–3878. doi:10.1063/1.1680571
  • Dahal, K.R. and Chow, T.E., 2015. Characterization of neighborhood sensitivity of an irregular cellular automata model of urban growth. International Journal of Geographical Information Science, 29 (3), 475–497. doi:10.1080/13658816.2014.987779
  • De Almeida, C.M., et al. 2003. Stochastic cellular automata modeling of urban land use dynamics: empirical development and estimation. Computers, Environment and Urban Systems, 27 (5), 481–509. doi:10.1016/S0198-9715(02)00042-X
  • Deman, G., et al., 2016. Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in a multi-layered hydrogeological model. Reliability Engineering and System Safety, 147, 156–169. doi:10.1016/j.ress.2015.11.005
  • Erlacher, C., et al. 2017. A GPU-based parallelization approach to conduct spatially-explicit uncertainty and sensitivity analysis in the application domain of landscape assessment. GI_Forum, (1), 44–58. doi:10.1553/giscience2017_01_s44
  • Gómez‐Delgado, M. and Tarantola, S., 2006. GLOBAL sensitivity analysis, GIS and multi‐criteria evaluation for a sustainable planning of a hazardous waste disposal site in Spain. International Journal of Geographical Information Science, 20 (4), 449–466. doi:10.1080/13658810600607709
  • Halls, J.N., 2002. A spatial sensitivity analysis of land use characteristics and phosphorus levels in small tidal creek estuaries of North Carolina, USA. Journal of Coastal Research, Special Issue (36), 340–351.
  • Helton, J.C., 1993. Uncertainty and sensitivity analysis techniques for use in performance assessment for radioactive waste disposal. Reliability Engineering & System Safety, 42 (2–3), 327–367. doi:10.1016/0951-8320(93)90097-I
  • Helton, J.C. and Davis, F.J., 2002. Illustration of sampling based methods for uncertainty and sensitivity analysis. Risk Analysis, 22 (3), 591–622. doi:10.1111/risk.2002.22.issue-3
  • Herman, J.D., et al. 2013. From maps to movies: high-resolution time-varying sensitivity analysis for spatially distributed watershed models. Hydrology and Earth System Sciences, 17 (12), 5109–5125. doi:10.5194/hess-17-5109-2013
  • Heuvelink, G.B.M., 1989. Propagation of errors in spatial modelling with GIS. International Journal of Geographical Information Systems, 3 (4), 303–322. doi:10.1080/02693798908941518
  • Heuvelink, G.B.M., 1998. Uncertainty analysis in environmental modelling under a change of spatial scale. Nutrient Cycling in Agroecosystems, 50, 255–264. doi:10.1023/A:1009700614041
  • Heuvelink, G.B.M., 2003. Analysis uncertainty propagation in GIS: why is it not that simple?. In: G.M. Foody and P.M. Atkinson, eds. Uncertainty in remote sensing and GIS. West Sussex, England: John Wiley & Sons, Ltd, 155–165.
  • Heuvelink, G.B.M. and Burrough, P.A., 1993. Error propagation in cartographic modelling using Boolean logic and continuous classification. International Journal of Geographical Information Systems, 7 (3), 231–246. doi:10.1080/02693799308901954
  • Heuvelink, G.B.M. and Burrough, P.A., 2002. Developments in statistical approaches to spatial uncertainty and its propagation. International Journal of Geographical Information Science, 16 (2), 111–113. doi:10.1080/13658810110099071
  • Holland, J., 1999. Emergence : from chaos to order. Cambridge, MA: Perseus Book.
  • Hu, Y., et al. 2015. Global sensitivity analysis for large-scale socio-hydrological models using Hadoop. Environmental Modelling & Software, 73 (2015), 231–243. doi:10.1016/j.envsoft.2015.08.015
  • Jantz, C.A. and Goetz, S.J., 2005. Analysis of scale dependencies in an urban land-use‐change model. International Journal of Geographical Information Science, 19 (2), 217–241. doi:10.1080/13658810410001713425
  • Jantz, C.A., Goetz, S.J., and Shelley, M.K., 2003. Using the SLEUTH urban growth model to simulate the impacts of future policy scenarios on urban land use in the Baltimore-Washington metropolitan area. Environment and Planning B: Planning and Design, 31 (2), 251–271. doi:10.1068/b2983
  • Kim, J.H., 2013. Spatiotemporal scale dependency and other sensitivities in dynamic land-use change simulations. International Journal of Geographical Information Science, 27 (9), 1782–1803. doi:10.1080/13658816.2013.787145
  • Kocabas, V. and Dragićević, S., 2006. Assessing cellular automata model behaviour using a sensitivity analysis approach. Computers, Environment and Urban Systems, 30 (6), 921–953. doi:10.1016/j.compenvurbsys.2006.01.001
  • Kyriakidis, P.C. and Goodchild, M.F., 2006. On the prediction error variance of three common spatial interpolation schemes. International Journal of Geographical Information Science, 20 (8), 823–855. doi:10.1080/13658810600711279
  • Lamboni, M., et al. 2009. Multivariate global sensitivity analysis for dynamic crop models. Field Crops Research, 113 (3), 312–320. doi:10.1016/j.fcr.2009.06.007
  • Li, X., Liu, X., and Yu, L., 2014. A systematic sensitivity analysis of constrained cellular automata model for urban growth simulation based on different transition rules. International Journal of Geographical Information Science, 28 (7), 1317–1335. doi:10.1080/13658816.2014.883079
  • Ligmann-Zielinska, A., 2013. Spatially-explicit sensitivity analysis of an agent-based model of land use change. International Journal of Geographical Information Science, 27 (9), 1764–1781. doi:10.1080/13658816.2013.782613
  • Ligmann-Zielinska, A. and Jankowski, P., 2014. Spatially-explicit integrated uncertainty and sensitivity analysis of criteria weights in multicriteria land suitability evaluation. Environmental Modelling and Software, 57, 235–247. doi:10.1016/j.envsoft.2014.03.007
  • Lilburne, L. and Tarantola, S., 2009. Sensitivity analysis of spatial models. International Journal of Geographical Information Science, 23 (February 2015), 151–168. doi:10.1080/13658810802094995
  • Marrel, A., et al. 2011. Global sensitivity analysis for models with spatially dependent outputs. Environmetrics, 22 (3), 383–397. doi:10.1002/env.1071
  • Ménard, A. and Marceau, D.J., 2005. Exploration of spatial scale sensitivity in geographic cellular automata. Environment and Planning B: Planning and Design, 32 (5), 693–714. doi:10.1068/b31163
  • Metropolis, N. and Ulam, S., 1949. The Monte Carlo method. Journal of American Statistical Association, 44 (247), 335–341. doi:10.1080/01621459.1949.10483310
  • Moreau, P., et al., 2013. An approach for global sensitivity analysis of a complex environmental model to spatial inputs and parameters: a case study of an agro-hydrological model. Environmental Modelling and Software, 47, 74–87. doi:10.1016/j.envsoft.2013.04.006
  • Moreno, N., Wang, F., and Marceau, D., 2008. An object-based land-use cellular automata model to overcome cell size and neighborhood sensitivity. Proceedings of GEOBIA 2008–pixels, objects, intelligence GEOgraphic object based image analysis for the 21st century, 5–8 August, Calgary. Available from: http://www.isprs.org/proceedings/XXXVIII/4-C1/Sessions/Session6/6753_Marceau_Proc_pap.pdf [Accessed 2 September 2016].
  • Najm, H.N., 2009. Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics. Annual Review of Fluid Mechanics, 41 (1), 35–52. doi:10.1146/annurev.fluid.010908.165248
  • NCGIA. SLEUTH - Project Gigapolis. Available at: http://www.ncgia.ucsb.edu/projects/gig/ [Accessed 2 September 2016].
  • O’Hagan, A., 2011. Polynomial chaos: a tutorial and critique from a statistician’s perspective. SIAM/ASA J. Uncertainty Quantification, 20 (2013), 1–20.
  • Oakley, J. and Hagan, A.O., 2000. Bayesian inference for the uncertainty distribution of computer model outputs. Biometrika, 89 (4), 769–784. doi:10.1093/biomet/89.4.769
  • Pan, Y., et al. 2010. The impact of variation in scale on the behavior of a cellular automata used for land use change modeling. Computers, Environment and Urban Systems, 34 (5), 400–408. doi:10.1016/j.compenvurbsys.2010.03.003
  • Pontius, R.G. and Neeti, N., 2010. Uncertainty in the difference between maps of future land change scenarios. Sustainability Science, 5 (1), 39–50. doi:10.1007/s11625-009-0095-z
  • Rajabi, M.M., Ataie-Ashtiani, B., and Simmons, C.T., 2015. Polynomial chaos expansions for uncertainty propagation and moment independent sensitivity analysis of seawater intrusion simulations. Journal of Hydrology, 520, 101–122. doi:10.1016/j.jhydrol.2014.11.020
  • Ratto, M. and Pagano, A., 2012. State dependent regressions: from sensitivity analysis to meta-modeling. In L. Wang, H. Garnier, eds. Environmental modeling, and control system design. London: Springer. 171–190.
  • Roura-Pascual, N., et al. 2010. Spatially-explicit sensitivity analysis for conservation management: exploring the influence of decisions in invasive alien plant management. Diversity and Distributions, 16 (3), 426–438. doi:10.1111/j.1472-4642.2010.00659.x
  • Rutherford, M.J., Crowther, M.J., and Lambert, P.C., 2015. The use of restricted cubic splines to approximate complex hazard functions in the analysis of time-to-event data: a simulation study. Journal of Statistical Computation and Simulation, 85 (4), 777–793. Available at. doi:10.1080/00949655.2013.845890
  • Saint-Geours, N., et al., 2014. Multi-scale spatial sensitivity analysis of a model for economic appraisal of flood risk management policies. Environmental Modelling & Software, 60, 153–166. doi:10.1016/j.envsoft.2014.06.012
  • Şalap-Ayça, S. and Jankowski, P., 2016. Integrating local multi-criteria evaluation with spatially explicit uncertainty-sensitivity analysis. Spatial Cognition & Computation, 16 (2), 106–132. doi:10.1080/13875868.2015.1137578
  • Saltelli, A., et al. 2010. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Computer Physics Communications, 181 (2), 259–270. doi:10.1016/j.cpc.2009.09.018
  • Saltelli, A., Chan, K., and Scott, E.M., 2000. Sensitivity analysis. New York: Wiley.
  • Saltelli, A., Tarantola, S., and Chan, K.P.S., 1999. A quantiative model-independent method for global sensitivity analysis of model output. Techniques, 41 (1), 39–56. doi:10.1080/00401706.1999.10485594
  • Samat, N., 2006. Characterizing the scale sensitivity of the cellular automata simulated urban growth: a case study of the Seberang Perai Region, Penang State, Malaysia. Computers, Environment and Urban Systems, 30 (6), 905–920. doi:10.1016/j.compenvurbsys.2005.11.002
  • Sobol’, I.M., 1993. Sensitivity analysis for non-linear mathematical models. Mathematical Modeling & Computational Experiments, 1, 407–414.
  • Sobol’, I.M., 2001. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation, 55 (1–3), 271–280. doi:10.1016/S0378-4754(00)00270-6
  • Sudret, B., 2008. Global sensitivity analysis using polynomial chaos expansions. Reliability Engineering and System Safety, 93 (7), 964–979. doi:10.1016/j.ress.2007.04.002
  • Sudret, B., 2014. Polynomial chaos expansions and stochastic finite element methods. In: K. Phoon and J. Ching, eds. Risk and reliability in geotechnical engineering. Boca Raton, FL: CRC Press, 265–300.
  • Tang, W. and Jia, M., 2014. Global sensitivity analysis of a large agent-based model of spatial opinion exchange: a heterogeneous multi-GPU acceleration approach. Annals of the Association of American Geographers, 104 (3), 485–509. doi:10.1080/00045608.2014.892342
  • Tobler, W.R., 1979. Cellular geography. In: S. Gale and G. Olsson, eds. Philosophy in Geography. Dortrecht, NL: Dortrecht Reidel, 379–386.
  • Torrens, P.M. and Nara, A., 2007. Modeling gentrification dynamics: a hybrid approach. Computers, Environment and Urban Systems, 31 (3), 337–361. doi:10.1016/j.compenvurbsys.2006.07.004
  • Torrens, P.M. and O’Sullivan, D., 2000. Cities, cells, and complexity: developing a research agenda for urban geocomputation. In 5th international conference on GeoComputation. University of Greenwich, UK, pp. 1–14.
  • Ulam, S., 1952. Random processes and transformations. Proceedings of the International Congress of Mathematics, 2, 264–275.
  • van Vliet, J., et al. 2016. A review of current calibration and validation practises in land-change modeling. Environmental Modelling and Software, (82), 174–182. doi:10.1016/j.envsoft.2016.04.017
  • Villa-Vialaneix, N., et al. 2012. A comparison of eight metamodeling techniques for the simulation of N 2O fluxes and N leaching from corn crops. Environmental Modelling and Software, 34 (August 2017), 51–66. doi:10.1016/j.envsoft.2011.05.003
  • Von Neumann, J., 1966. In: A.W. Burks, ed. Theory of self-reproducing automata. Champaign, IL: University of Illinois Press.
  • Wackernagel, H., 2003. Multivariate geostatistics: an introduction with applications. New York: Springer Berlin Heidelberg.
  • White, R. and Engelen, G., 1993. Cellular automata and fractal urban form: a cellular modelling approach to the evolution of urban land-use patterns. Environment and Planning A, 25 (8), 1175–1199. doi:10.1068/a251175
  • White, R. and Engelen, G., 1994. Urban systems dynamics and cellular automata: fractal structures between order and chaos. Chaos, Solitons and Fractals, 4 (4), 563–583. doi:10.1016/0960-0779(94)90066-3
  • White, R., Engelen, G., and Uljee, I., 1997. The use of constrained cellular automata for high-resolution modelling of urban land-use dynamics. Environment and Planning B: Urban Analytics and City Science, 24 (3), 323–343. doi:10.1068/b240323
  • Wiener, N., 1938. The homogenous chaos. American Journal of Mathematics, 60 (4), 897–936. doi:10.2307/2371268
  • Xiu, D., et al. 2002. Stochastic modeling of flow-structure interactions using generalized polynomial chaos. Journal of Fluids Engineering, 124 (1), 51. doi:10.1115/1.1436089
  • Xiu, D. and Karniadakis, G.E., 2002. The Wiener-Askey polynomial chaos for stochastic differential equations. Society for Industrial and Applied Mathematics Journal of Scientific Computing, 24 (2), 619–644.
  • Xu, E. and Zhang, H., 2013. Spatially-explicit sensitivity analysis for land suitability evaluation. Applied Geography, 45, 1–9. doi:10.1016/j.apgeog.2013.08.005
  • Yeh, A.G.-O. and Li, X., 2006. Error propagation and model uncertainties of cellular automata in urban simulation with GIS. Computers, Environment and Urban Systems, 30 (1), 10–28. doi:10.1016/j.compenvurbsys.2004.05.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.