613
Views
6
CrossRef citations to date
0
Altmetric
Article

A spatial dynamic model of population changes in a vulnerable coastal environment

& ORCID Icon
Pages 685-710 | Received 30 Jun 2016, Accepted 16 Nov 2017, Published online: 27 Nov 2017

References

  • Batty, M., Couclelis, H., and Eichen, M., 1997. Urban systems as cellular automata. Environment and Planning B: Planning and Design, 24, 159–164. doi:10.1068/b240159
  • Batty, M., Xie, Y., and Sun, Z.L., 1994. Modeling urban dynamics through GIS-based cellular automata. Computers, Environment and Urban Systems, 23, 205–233. doi:10.1016/S0198-9715(99)00015-0
  • Benenson, I. and Torrens, P.M., 2004. Geosimulation: automata-based modelling of urban phenomena. West Sussex, UK: Wiley.
  • Blum, M.D. and Roberts, H.H., 2009. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nature Geoscience Letters, 2 (7), 488–490. doi:10.1038/ngeo553
  • Boccara, N. and Cheong, K., 1992. Automata network SIR models for the spread of infectious diseases in populations of moving individuals. Journal of Physics A: Mathematical and General, 25, 2447–2461. doi:10.1088/0305-4470/25/9/018
  • Boccara, N. and Cheong, K., 1993. Critical behaviour of a probabilistic automata network SIS model for the spread of an infectious disease in a population of moving individuals. Journal of Physics A: Mathematical and General, 26, 3707–3717. doi:10.1088/0305-4470/26/15/020
  • Bolin, B., et al., 2000. Core questions of science and technology for sustainability. Available from: http://sustainabilityscience.org/content.html?contentid=776/ [Accessed 2 Nov 2014].
  • Bonabeau, E., 2002. Agent-based modeling: methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences, 99, 7280–7287. doi:10.1073/pnas.082080899
  • Brown, D.G. and Xie, Y., 2006. Spatial agent-based modelling. International Journal of Geographical Information Science, 20 (9), 941–943. doi:10.1080/13658810600830491
  • Bruch, E. and Mare, R., 2012. Methodological issues in the analysis of residential preferences, residential mobility and neighborhood change. Sociological Methodology, 42 (1), 103–154. doi:10.1177/0081175012444105
  • Cai, H., et al., 2016. Assessing community resilience to coastal hazards in the Lower Mississippi River Basin. Water, 8 (2), 46. doi:10.3390/w8020046
  • Caruso, G., et al., 2007. Spatial configurations in a peri-urban city. A cellular automata based microeconomic model. Regional Science and Urban Economics, 37, 542–567. doi:10.1016/j.regsciurbeco.2007.01.005
  • Cavailhès, J., et al., 2004. Where Alonso meets Sierpinski: an urban economic model of a fractal metropolitan area. Environment and Planning A, 36, 1471–1498. doi:10.1068/a36126
  • Chen, Y., et al., 2012. Defining agents’ behaviour based on urban economic theory to simulate complex urban residential dynamics. International Journal of Geographical Information Science, 26, 1155–1172. doi:10.1080/13658816.2011.626780
  • Clarke, K.C. and Gaydos, L., 1998. Loose-coupling a cellular automaton model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore. International Journal of Geographical Information Science, 12, 699–714. doi:10.1080/136588198241617
  • Clarke, K.C., Hoppen, S., and Gaydos, L.A., 1997. A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and Planning B: Planning and Design, 24, 247–261. doi:10.1068/b240247
  • Collins, S.L., et al., 2011. An integrated conceptual framework for long-term social-ecological research. Frontiers in Ecology and the Environment, 9 (6), 351–357. doi:10.1890/100068
  • Conte, R., 2002. Agent-based modeling for understanding social intelligence. Proceedings of the National Academy of Sciences of the United States of America PNAS, 99 (Supplement 3), 7189–7190. doi:10.1073/pnas.072078999
  • CPRA, Coastal Protection and Restoration Authority of Louisiana, 2012. Louisiana’s comprehensive master plan for a sustainable coast. Baton Rouge, LA: CPRA, State of Louisiana.
  • Cromley, R.G., Hanink, D.M., and Bentley, G.C., 2012. A quantile regression approach to areal interpolation. Annals of the Association of American Geographers, 102 (4), 763–777. doi:10.1080/00045608.2011.627054
  • Dökmeci, V. and Berköz, L., 2000. Residential-location preferences according to demographic characteristics in Istanbul. Landscape and Urban Planning, 48 (1–2), 45–55. doi:10.1016/S0169-2046(99)00080-8
  • Doubilet, P., et al., 1985. Probabilistic sensitivity analysis using Monte Carlo simulation: a practical approach. Medical Decision Making, 5, 157–177. doi:10.1177/0272989X8500500205
  • Fontaine, C.M. and Rounsevell, M.D.A., 2009. An agent-based approach to model future residential pressure on a regional landscape. Landscape Ecology, 24 (9), 1237–1254. doi:10.1007/s10980-009-9378-0
  • Forrester, J.W, 1961. Industrial dynamics. Pegasus Communications, MA: the M.I.T. press.
  • Forrester, J.W., 1969. Urban dynamics. Cambridge, MA: the M.I.T. press.
  • Fujita, M. and Thisse, J.F., 2002. Economics of agglomeration: cities, industrial location and regional growth. Cambridge: Cambridge University Press.
  • Goodchild, M.F. and Lam, N.S.N., 1980. Areal interpolation: a variant of the traditional spatial problem. Geo-Processing, 1, 297–312.
  • Hellweger, F., 2008. Spatially explicit individual-based modeling using a fixed super-individual density. Computers & Geosciences, 34, 144–152. doi:10.1016/j.cageo.2006.12.006
  • Hoerl, A. and Kennard, R., 1988. Ridge regression. In encyclopedia of statistical sciences. Vol. 8. New York: Wiley, 129–136.
  • Irwin, E.G. and Bockstael, N.E., 2002. Interacting agents, spatial externalities and the evolution of residential land use patterns. Journal of Economic Geography, 2, 31–54. doi:10.1093/jeg/2.1.31
  • Jennings, N., 2000. On agent-based software engineering. Artificial Intelligence, 117, 277–296. doi:10.1016/S0004-3702(99)00107-1
  • Kates, R.W., 2011. From the unity of nature to sustainability science: ideas and practice. CID Working Paper (218). Cambridge, MA: Center for International Development, Harvard University. Available from: http://www.hks.harvard.edu/centers/cid/publications/faculty-workingpapers/cid-working paperno.-218 [Accessed 15 Nov 2011].
  • Krugman, P., 1991. Increasing returns and economic geography. Journal of Political Economy, 99 (3), 483–499. doi:10.1086/261763
  • Lam, N.S.N., 1980. Methods and Problems of Areal Interpolation. PhD Dissertation. University of Western Ontario, London, Ontario, Canada.
  • Lam, N.S.N., 1983. Spatial interpolation methods: a review. The American Cartographer, 10 (2), 129–150. doi:10.1559/152304083783914958
  • Lam, N.S.N., et al., 2009a. An estimate of population impacted by climate change along the U.S. coast. Journal of Coastal Research, Special Issue 56, 1522–1526.
  • Lam, N.S.N., et al., 2009b. Business return in New Orleans: decision making amid post-Katrina uncertainty. Public Library of Science (Plos ONE), 4 (8), 6765.
  • Lam, N.S.N., 2012. Geospatial methods for reducing uncertainties in environmental health risk assessment: challenges and opportunities. Annals of the Association of American Geographers, 102 (5), 942–950. doi:10.1080/00045608.2012.674900
  • Lam, N.S.N., et al., 2012. Predictors of business return in New Orleans after Hurricane Katrina. PLoS One, 7 (10), e47935: 1–8. doi:10.1371/journal.pone.0047935
  • Lam, N.S.N., et al., 2016. Measuring community resilience to coastal hazards along the Northern Gulf of Mexico. Natural Hazards Review. doi:10.1061/(ASCE)NH.1527-6996.0000193
  • Lam, N.S.N. and Quattrochi, D.A., 1992. On the issues of scale, resolution, fractal analysis in the Mapping Sciences. The Professional Geographer, 44 (1), 88–98. doi:10.1111/j.0033-0124.1992.00088.x
  • Lam, N.S.N., 2009. Spatial interpolation. In: R. Kitchin and N. Thrift, eds. International encyclopedia of human geography. Vol. 10. Oxford: Elsevier, 369–376.
  • LeSage, J.P., et al., 2011a. New Orleans business recovery in the aftermath of Hurricane Katrina. Journal of Royal Statistics Society A, 174 (4), 1007–1027. doi:10.1111/j.1467-985X.2011.00712.x
  • LeSage, J.P., et al., 2011b. Space-time modeling of natural disaster impacts. Journal of Economic and Social Measurement, 36, 169–191.
  • LeSage, J.P., et al., 2011c. Do what the neighbors do: reopening businesses after Hurricane Katrina. Significance, 8 (4), 160–163. doi:10.1111/j.1740-9713.2011.00520.x
  • Li, X. and Liu, X.P., 2007. Defining agents’ behaviors to simulate complex residential development using multi-criteria evaluation. Journal of Environmental Management, 85 (4), 1063–1075. doi:10.1016/j.jenvman.2006.11.006
  • Li, X. and Liu, X.P., 2008. Embedding sustainable development strategies in agent-based models for use as a planning tool. International Journal of Geographical Information Science, 22 (1), 21–45. doi:10.1080/13658810701228686
  • Ligtenberg, A., Bregt, A.K., and Lammeren, R.V., 2001. Multi-actor-based land use modelling: spatial planning using agents. Landscape and Urban Planning, 56, 21–33. doi:10.1016/S0169-2046(01)00162-1
  • Lindberg, E., et al., 1992. Residential location preferences across the life-span. Journal of Environmental Psychology, 12, 187–198. doi:10.1016/S0272-4944(05)80070-2
  • Liu, J.G., et al., 2007a. Complexity of coupled human and natural systems. Science, 317 (5844), 1513–1516. doi:10.1126/science.1144004
  • Liu, J.G., et al., 2007b. Coupled human and natural systems. AMBIO: A Journal of the Human Environment, 36 (8), 639–649. doi:10.1579/0044-7447(2007)36[639:CHANS]2.0.CO;2
  • Malanson, G.P., Zeng, Y., and Walsh, S.J., 2006a. Complexity at advancing ecotones and frontiers. Environment and Planning A, 38, 619–632. doi:10.1068/a37340
  • Malanson, G.P., Zeng, Y., and Walsh, S.J., 2006b. Landscape frontiers, geography frontiers: lessons to be learned. The Professional Geographer, 58, 383–396. doi:10.1111/j.1467-9272.2006.00576.x
  • McFadden, D. (1978). Choice of residential location. Cowles Foundation Discussion Paper 477.
  • Munroe, D.K., 2007. Exploring the determinants of spatial pattern in residential land markets: amenities and disamenities in Charlotte, NC, USA. Environment and Planning B: Planning and Design, 34, 336–354. doi:10.1068/b32065
  • Niedomysl, T., 2008. Residential preferences for interregional migration in Sweden: demographic, socioeconomic, and geographical determinants. Environment and Planning A, 40, 1109–1131. doi:10.1068/a39177
  • Nijkamp, P., Van Wissen, L., and Rima, A., 1993. A household life cycle model for residential relocation behaviour. Socioeconomic Planning Sciences, 27, 35–53. doi:10.1016/0038-0121(93)90027-G
  • Parker, D.C. and Filatova, T., 2008. A conceptual design for a bilateral agent-based land market with heterogeneous economic agents. Computers, Environment and Urban Systems, 32, 454–463. doi:10.1016/j.compenvurbsys.2008.09.012
  • Plyer, A., 3 May 2013. Facts for Features: hurricane Katrina Recovery. GNOCDC. Greater New Orleans Community Data Center, 30 Jan. 2013. Web. Available from: http://www.gnocdc.org/Factsforfeatures/HurricaneKatrinaRecovery/.
  • Pontius Jr, R.G., et al., 2008b. Comparing the input, output, and validation maps for several models of land change. The Annals of Regional Science, 42 (1), 11–37. doi:10.1007/s00168-007-0138-2
  • Pontius Jr, R.G. and Millones, M., 2011. Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing, 32 (15), 4407–4429. doi:10.1080/01431161.2011.552923
  • Pontius Jr, R.G., Thontteh, O., and Chen, H., 2008a. Components of information for multiple resolution comparison between maps that share a real variable. Environmental and Ecological Statistics, 15 (2), 111–142. doi:10.1007/s10651-007-0043-y
  • Qiang, Y. and Lam, N.S.N., 2015. Modeling land use and land cover changes in a vulnerable coastal region using artificial neural networks and cellular automata. Environmental Monitoring and Assessment, 187. doi:10.1007/s10661-015-4298-8
  • Qiang, Y. and Lam, N.S.N., 2016. The impact of Hurricane Katrina on urban growth in Louisiana: an analysis using data mining and simulation approaches. International Journal of Geographical Information Science, 30, 1832–1852. doi:10.1080/13658816.2016.1144886
  • Scheffer, M., et al., 1995. Super-individuals a simple solution for modelling large populations on an individual basis. Ecological Modelling, 80, 161–170. doi:10.1016/0304-3800(94)00055-M
  • Schultz, J. and Elliott, J.R., 2012. Natural disasters and local demographic change in the United States. Population Environment, 34 (3), 293–312. doi:10.1007/s11111-012-0171-7
  • Shi, W. and Pang, M.Y., 2000. Development of Voronoi-based cellular automata -an integrated dynamic model for GeographicalInformation Systems. International Journal Geographic Information Sciences, 14, 455–474. doi:10.1080/13658810050057597
  • Shu, Y., Lam, N.S., and Reams, M., 2010. A new method for estimating carbon dioxide emissions from transportation at fine spatial scales. Environmental Research Letters, 5 (4), 044008. doi:10.1088/1748-9326/5/4/044008
  • Tibshirani, R., 1996. Regression shrinkage and selection via the lasso. Journal R Statistic Social B, 58, 267–288.
  • Torrens, P.M., 2001. Can geocomputation save urban simulation? Throw some agents into the mixture, simmer, and wait. University College of London, Centre for Advanced Spatial Analysis, London, UK: Working Paper series 32.
  • Twilley, R.R., et al., 2016. Co-evolution of wetland landscapes, flooding and human settlement in the Mississippi River Delta Plain. Sustainability Science, 11, 711–731. doi:10.1007/s11625-016-0374-4
  • Vaz, E., et al., 2012. A multi-scenario forecast of urban change: a study on urban growth in the Algarve. Landscape and Urban Planning, 104, 201–211. doi:10.1016/j.landurbplan.2011.10.007
  • Whittingham, M.J., et al., 2006. Why do we still use stepwise modelling in ecology and behaviour? Journal of Animal Ecology, 75 (5), 1182–1189. doi:10.1111/j.1365-2656.2006.01141.x
  • Wright, J.A., and Alajmi, A.F., 2005. The robustness of genetic algorithms in solving unconstrained building optimization problems. In: 9th International IBPSA Building Simulation Conference, 15-18 August 2005. Montréal, Canada.
  • Wu, F. and Webster, C.J., 2000. Simulating artificial cities in a GIS environment: urban growth under alternative regulation regimes. International Journal of Geographical Information Science, 14, 625–648. doi:10.1080/136588100424945
  • Xie, Y.C., 1997. A generalized model for cellular urban dynamics. Geographical Analysis, 28, 350–373. doi:10.1111/gean.1996.28.issue-4
  • Yin, L. and Muller, B., 2007. Residential location and the biophysical environment: exurban development agents in a heterogeneous landscape. Environment and Planning B: Planning and Design, 34, 279–295. doi:10.1068/b31182
  • Zhou, C.H., Sun, Z.H., and Xie, Y.C., 1999. The research of geographical cellular automata. Beijing, China: Science Press, 1–163.
  • Zou, H. and Hastie, T., 2005. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67 (2), 301–320. doi:10.1111/rssb.2005.67.issue-2
  • Zou, L., et al., 2016. Evaluating land subsidence rates and their implications for land loss in the Lower Mississippi River Basin. Water, 8 (1). doi:10.3390/w8010010.15p

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.