810
Views
22
CrossRef citations to date
0
Altmetric
Research article

A comparative approach to modelling multiple urban land use changes using tree-based methods and cellular automata: the case of Greater Tokyo Area

, ORCID Icon, & ORCID Icon
Pages 757-782 | Received 07 Aug 2017, Accepted 24 Nov 2017, Published online: 04 Dec 2017

References

  • Abadi, M., et al., 2016. Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv Preprint arXiv, 1603.04467.
  • Aburas, M.M., et al., 2016. The simulation and prediction of spatio-temporal urban growth trends using cellular automata models: a review. International Journal of Applied Earth Observation and Geoinformation, 52, 380–389. doi:10.1016/j.jag.2016.07.007
  • Almeida, C.M., et al., 2003. Stochastic cellular automata modeling of urban land use dynamics: empirical development and estimation. Computers, Environment and Urban Systems, 27 (5), 481–509. doi:10.1016/S0198-9715(02)00042-X
  • Almeida, C.M., et al., 2008. Using neural networks and cellular automata for modelling intraurban landuse dynamics. International Journal of Geographical Information Science, 22 (9), 943–963. doi:10.1080/13658810701731168
  • Al-Sharif, A.A. and Pradhan, B., 2015. A novel approach for predicting the spatial patterns of urban expansion by combining the chi-squared automatic integration detection decision tree, Markov chain and cellular automata models in GIS. Geocarto International, 30 (8), 858–881. doi:10.1080/10106049.2014.997308
  • Arsanjani, J.J., et al., 2013. Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 21 (1), 265–275. doi:10.1016/j.jag.2011.12.014
  • Ben-Gal, I., et al., 2014. Efficient construction of decision trees by the dual information distance method. Quality Technology & Quantitative Management, 11 (1), 133–147. doi:10.1080/16843703.2014.11673330
  • Bennett, N.D., et al., 2013. Characterising performance of environmental models. Environmental Modelling and Software, 40, 1–20. doi:10.1016/j.envsoft.2012.09.011
  • Berberoğlu, S., Akn, A., and Clarke, K.C., 2016. Cellular automata modeling approaches to forecast urban growth for Adana, Turkey: a comparative approach. Landscape and Urban Planning, 153, 11–27. doi:10.1016/j.landurbplan.2016.04.017
  • Breiman, L., et al., 1984. Classification and regression trees. London, UK: Chapman & Hall/CRC press.
  • Breiman, L., 1996. Bagging predictors. Machine Learning, 24 (2), 123–140. doi:10.1007/BF00058655
  • Breiman, L., 2001. Random forests. Machine Learning, 45 (1), 5–32. doi:10.1023/A:1010933404324
  • Camacho Olmedo, M.T., Paegelow, M., and Mas, J.F., 2013. Interest in intermediate soft-classified maps in land change model validation: suitability versus transition potential. International Journal of Geographical Information Science, 27 (12), 2343–2361. doi:10.1080/13658816.2013.831867
  • Caruana, R. and Niculescu-Mizil, A., 2006. An empirical comparison of supervised learning algorithms. In: Proceedings of the 23rd international conference on Machine learning, New York, NY: ACM, 161–168.
  • Chen, Y., et al., 2014. Modeling urban land-use dynamics in a fast developing city using the modified logistic cellular automaton with a patch-based simulation strategy. International Journal of Geographical Information Science, 28 (2), 234–255. doi:10.1080/13658816.2013.831868
  • Chen, Y., et al., 2016. Capturing the varying effects of driving forces over time for the simulation of urban growth by using survival analysis and cellular automata. Landscape and Urban Planning, 152, 59–71. doi:10.1016/j.landurbplan.2016.03.011
  • Clarke, K.C., Hoppen, S., and Gaydos, L., 1997. A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and Planning B: Planning and Design, 24 (2), 247–261. doi:10.1068/b240247
  • Costanza, R., 1989. Model goodness of fit: a multiple resolution procedure. Ecological Modelling, 47 (3–4), 199–215. doi:10.1016/0304-3800(89)90001-X
  • Davis, J. and Goadrich, M., 2006. The relationship between Precision-Recall and ROC curves. In: Proceedings of the 23rd international conference on Machine learning, New York, NY: ACM, 233–240.
  • Deadman, P., Brown, R.D., and Gimblett, H.R., 1993. Modelling rural residential settlement patterns with cellular automata. Journal of Environmental Management, 37 (2), 147–160. doi:10.1006/jema.1993.1011
  • Friedman, J.H., 2002. Stochastic gradient boosting. Computational Statistics & Data Analysis, 38 (4), 367–378. doi:10.1016/S0167-9473(01)00065-2
  • García, A.M., et al., 2012. A comparative analysis of cellular automata models for simulation of small urban areas in Galicia, NW Spain. Computers, Environment and Urban Systems, 36 (4), 291–301. doi:10.1016/j.compenvurbsys.2012.01.001
  • Geurts, P., Ernst, D., and Wehenkel, L., 2006. Extremely randomized trees. Machine Learning, 63 (1), 3–42. doi:10.1007/s10994-006-6226-1
  • Gong, Z., Thill, J.C., and Liu, W., 2015. ART-P-MAP neural networks modeling of land-use change: accounting for spatial heterogeneity and uncertainty. Geographical Analysis, 47 (4), 376–409. doi:10.1111/gean.12077
  • Guan, Q., Wang, L., and Clarke, K.C., 2005. An artificial-neural-network-based, constrained CA model for simulating urban growth. Cartography and Geographic Information Science, 32 (4), 369–380. doi:10.1559/152304005775194746
  • Hagen, A., 2003. Fuzzy set approach to assessing similarity of categorical maps. International Journal of Geographical Information Science, 17 (3), 235–249. doi:10.1080/13658810210157822
  • Hagoort, M., Geertman, S., and Ottens, H., 2008. Spatial externalities, neighbourhood rules and CA land-use modelling. The Annals of Regional Science, 42 (1), 39–56. doi:10.1007/s00168-007-0140-8
  • Hirzel, A. and Guisan, A., 2002. Which is the optimal sampling strategy for habitat suitability modelling. Ecological Modelling, 157 (2), 331–341. doi:10.1016/S0304-3800(02)00203-X
  • Huang, B., Zhang, L., and Wu, B., 2009. Spatiotemporal analysis of rural–urban land conversion. International Journal of Geographical Information Science, 23 (3), 379–398. doi:10.1080/13658810802119685
  • Irwin, E.G. and Geoghegan, J., 2001. Theory, data, methods: developing spatially explicit economic models of land use change. Agriculture, Ecosystems & Environment, 85 (1), 7–24. doi:10.1016/S0167-8809(01)00200-6
  • Jansen, L.J. and Veldkamp, T., 2012. Evaluation of the variation in semantic contents of class sets on modelling dynamics of land-use changes. International Journal of Geographical Information Science, 26 (4), 717–746. doi:10.1080/13658816.2011.609989
  • Kamusoko, C. and Gamba, J., 2015. Simulating urban growth using a Random Forest-Cellular Automata (RF-CA) model. ISPRS International Journal of Geo-Information, 4 (2), 447–470. doi:10.3390/ijgi4020447
  • Landis, J.R. and Koch, G.G., 1977. The measurement of observer agreement for categorical data. Biometrics, 33, 159–174. doi:10.2307/2529310
  • Li, X., Liu, X., and Gong, P., 2015. Integrating ensemble-urban cellular automata model with an uncertainty map to improve the performance of a single model. International Journal of Geographical Information Science, 29 (5), 762–785. doi:10.1080/13658816.2014.997237
  • Li, X., Liu, X., and Yu, L., 2014. A systematic sensitivity analysis of constrained cellular automata model for urban growth simulation based on different transition rules. International Journal of Geographical Information Science, 28 (7), 1317–1335. doi:10.1080/13658816.2014.883079
  • Li, X. and Yeh, A.G., 2001. Calibration of cellular automata by using neural networks for the simulation of complex urban systems. Environment and Planning A, 33 (8), 1445–1462. doi:10.1068/a33210
  • Li, X. and Yeh, A.G., 2002. Neural-network-based cellular automata for simulating multiple land use changes using GIS. International Journal of Geographical Information Science, 16 (4), 323–343. doi:10.1080/13658810210137004
  • Li, X. and Yeh, A.G., 2004. Data mining of cellular automata’s transition rules. International Journal of Geographical Information Science, 18 (8), 723–744. doi:10.1080/13658810410001705325
  • Liao, J., et al., 2016. Incorporation of extended neighborhood mechanisms and its impact on urban land-use cellular automata simulations. Environmental Modelling and Software, 75, 163–175. doi:10.1016/j.envsoft.2015.10.014
  • Matthews, R.B., et al., 2007. Agent-based land-use models: a review of applications. Landscape Ecology, 22 (10), 1447–1459. doi:10.1007/s10980-007-9135-1
  • Mozumder, C., Tripathi, N.K., and Losiri, C., 2016. Comparing three transition potential models: a case study of built-up transitions in North-East India. Computers, Environment and Urban Systems, 59, 38–49. doi:10.1016/j.compenvurbsys.2016.04.009
  • Munroe, D.K., Southworth, J., and Tucker, C.M., 2004. Modeling spatially and temporally complex land-cover change: the case of Western Honduras. The Professional Geographer, 56 (4), 544–559.
  • Munshi, T., et al., 2014. Logistic regression and cellular automata-based modelling of retail, commercial and residential development in the city of Ahmedabad, India. Cities, 39, 68–86. doi:10.1016/j.cities.2014.02.007
  • Murphy, B., 2014. PyKrige: development of a kriging toolkit for Python. In: AGU fall meeting abstracts, San Francisco, CA: AGU press.
  • Opitz, D.W. and Maclin, R., 1999. Popular ensemble methods: an empirical study. Journal Artificial Intelligent Researcher (JAIR), 11, 169–198.
  • Pedregosa, F., et al., 2011. Scikit-learn: machine learning in Python. Journal of Machine Learning Research, 12 (Oct), 2825–2830.
  • Pérez-Vega, A., Mas, J.F., and Ligmann-Zielinska, A., 2012. Comparing two approaches to land use/cover change modeling and their implications for the assessment of biodiversity loss in a deciduous tropical forest. Environmental Modelling and Software, 29 (1), 11–23. doi:10.1016/j.envsoft.2011.09.011
  • Pijanowski, B.C., et al., 2002. Using neural networks and GIS to forecast land use changes: a land transformation model. Computers, Environment and Urban Systems, 26 (6), 553–575. doi:10.1016/S0198-9715(01)00015-1
  • Pontius, R.G. and Schneider, L.C., 2001. Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agriculture, Ecosystems & Environment, 85 (1), 239–248. doi:10.1016/S0167-8809(01)00187-6
  • Puertas, O.L., Henrquez, C., and Meza, F.J., 2014. Assessing spatial dynamics of urban growth using an integrated land use model. Application in Santiago Metropolitan Area, 2010–2045. Land Use Policy, 38, 415–425. doi:10.1016/j.landusepol.2013.11.024
  • Quinlan, J.R., et al., 1996. Bagging, boosting, and C4. 5. In: Proceedings of the thirteen national conference on artificial intelligence. Cambridge, Massachusetts: AAAI press / MIT press.
  • Rey, S.J. and Anselin, L., 2010. PySAL: A Python library of spatial analytical methods. Handbook of Applied Spatial Analysis, Berlin: Springer, 175–193.
  • Rossetti, L.A., Sergio dos Anjos, F.P., and De Almeida, C.M., 2013. Cellular automata-based spatial dynamic modeling for analyzing urban land use change. In: Urban Remote Sensing Event (JURSE), Sao Paulo, Brazil, 2013 Joint. New York: IEEE, 1–4.
  • Santé, I., et al., 2010. Cellular automata models for the simulation of real-world urban processes: a review and analysis. Landscape and Urban Planning, 96 (2), 108–122. doi:10.1016/j.landurbplan.2010.03.001
  • Soares-Filho, B.S., Coutinho Cerqueira, G., and Lopes Pennachin, C., 2002. DINAMICA - A stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier. Ecological Modelling, 154 (3), 217–235. doi:10.1016/S0304-3800(02)00059-5
  • Tayyebi, A. and Pijanowski, B.C., 2014. Modeling multiple land use changes using ANN, CART and MARS: comparing tradeoffs in goodness of fit and explanatory power of data mining tools. International Journal of Applied Earth Observation and Geoinformation, 28 (1), 102–116. doi:10.1016/j.jag.2013.11.008
  • Van Vliet, J., et al., 2013. Measuring the neighbourhood effect to calibrate land use models. Computers, Environment and Urban Systems, 41, 55–64. doi:10.1016/j.compenvurbsys.2013.03.006
  • Verburg, P.H., et al., 2004. A method to analyse neighbourhood characteristics of land use patterns. Computers, Environment and Urban Systems, 28 (6), 667–690. doi:10.1016/j.compenvurbsys.2003.07.001
  • Wang, J. and Mountrakis, G., 2011. Developing a multi-network urbanization model: a case study of urban growth in Denver, Colorado. International Journal of Geographical Information Science, 25 (2), 229–253. doi:10.1080/13658810903473213
  • White, R., Uljee, I., and Engelen, G., 2012. Integrated modelling of population, employment and land-use change with a multiple activity-based variable grid cellular automaton. International Journal of Geographical Information Science, 26 (7), 1251–1280. doi:10.1080/13658816.2011.635146
  • Xie, C., et al., 2005. Spatial logistic regression and GIS to model rural-urban land conversion. In: Proceedings of PROCESSUS second international colloquium on the behavioural foundations of integrated land-use and transportation models: frameworks, models and applications, Toronto: University of Toronto, 12–15.
  • Xu, X., Du, Z., and Zhang, H., 2016. Integrating the system dynamic and cellular automata models to predict land use and land cover change. International Journal of Applied Earth Observation and Geoinformation, 52, 568–579. doi:10.1016/j.jag.2016.07.022
  • Yang, Q., Li, X., and Shi, X., 2008. Cellular automata for simulating land use changes based on support vector machines. Computers & Geosciences, 34 (6), 592–602. doi:10.1016/j.cageo.2007.08.003
  • Zheng, H.W., et al., 2015. Simulating land use change in urban renewal areas: a case study in Hong Kong. Habitat International, 46, 23–34. doi:10.1016/j.habitatint.2014.10.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.