613
Views
14
CrossRef citations to date
0
Altmetric
Research Articles

A spatio-contextual probabilistic model for extracting linear features in hilly terrains from high-resolution DEM data

ORCID Icon, ORCID Icon & ORCID Icon
Pages 666-686 | Received 13 Mar 2017, Accepted 28 Nov 2018, Published online: 21 Dec 2018

References

  • Akel, N.A., Filin, S., and Doytsher, Y., 2007. Orthogonal polynomials supported by region growing segmentation for the extraction of terrain from lidar data. Photogrammetric Engineering & Remote Sensing, 73 (11), 1253–1266. doi:10.14358/PERS.73.11.1253
  • Anders, N.S., et al., 2013. Geomorphological change detection using object-based feature extraction from multi-temporal LIDAR data. IEEE Geoscience and Remote Sensing Letters, 10 (6), 1587–1591. doi:10.1109/LGRS.2013.2262317
  • Ariza-Villaverde, A.B., Jiménez-Hornero, F.J., and Gutiérrez de Ravé, E., 2015. Influence of DEM resolution on drainage network extraction: a multifractal analysis. Geomorphology, 241, 243–254. doi:10.1016/j.geomorph.2015.03.040
  • Arundel, S.T., 2016. Pairing semantics and object-based image analysis for national terrain mapping - a first-case scenario of cirques. In: GEOBIA 2016: solutions and synergies. 14 September, University of Twente Faculty of Geo-Information and Earth Observation (ITC). doi: 10.3990/2.431
  • Arundel, S.T., Li, W., and Zhou, X. 2018. The effect of resolution on terrain feature extraction. In:Proceedings of Geomorphometry 2018, 13–17 August, Boulder, CO: PeerJ, doi:10.7287/peerj.preprints.27072v1
  • Blaschke, T., 2010. Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65 (1), 2–16. doi:10.1016/j.isprsjprs.2009.06.004
  • Burrough, P.A. and McDonnell, R.A., 1998. Principles of GIS. London, UK: Oxford University Press.
  • Cheng, G. and Han, J., 2016. A survey on object detection in optical remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, 117, 11–28. doi:10.1016/j.isprsjprs.2016.03.014
  • Drâguţ, L. and Eisank, C., 2012. Automated object-based classification of topography from SRTM data. Geomorphology, 141–142, 21–33. doi:10.1016/j.geomorph.2011.12.001
  • Finn, M.P. et al., (2002). AGNPS watershed modeling with GIS databases. Available from: https://pdfs.semanticscholar.org/8544/06cd879effb9a603d37311404b9c2cf279e9.pdf?_ga=2.104505411.2145761072.1542705935-998166575.1541397216
  • Font, M., Amorese, D., and Lagarde, J.-L., 2010. DEM and GIS analysis of the stream gradient index to evaluate effects of tectonics: the Normandy intraplate area (NW France). Geomorphology, 119 (3–4), 172–180. doi:10.1016/j.geomorph.2010.03.017
  • Gerçek, D., Toprak, V., and Strobl, J., 2011. Object-based classification of landforms based on their local geometry and geomorphometric context. International Journal of Geographical Information Science, 25 (6), 1011–1023. doi:10.1080/13658816.2011.558845
  • Gillin, C.P., et al., 2015. Evaluation of LiDAR-derived DEMs through terrain analysis and field comparison. Photogrammetric Engineering & Remote Sensing, 81 (5), 387–396. doi:10.14358/PERS.81.5.387
  • Goldgof, D.B., Huang, T.S., and Lee, H., 1989. A curvature-based approach to terrain recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11 (11), 1213–1217. doi:10.1109/34.42859
  • Goldgof, D.B., Huang, T.S., and Lee, H., 1990. Terrain analysis from curvature profiles. International Journal of Imaging Systems and Technology, 2 (3), 169–182. doi:10.1002/ima.1850020303
  • Hani, A.F.M., Sathyamoorthy, D., and Asirvadam, V.S., 2011. A method for computation of surface roughness of digital elevation model terrains via multiscale analysis. Computers & Geosciences, 37 (2), 177–192. doi:10.1016/j.cageo.2010.05.021
  • Höfle, B. and Rutzinger, M., 2011. Topographic airborne LiDAR in geomorphology: a technological perspective. Zeitschrift für Geomorphologie, Supplementary Issues, 55 (2), 1–29. doi:10.1127/0372-8854/2011/0055S2-0043
  • Jasiewicz, J. and Stepinski, T.F., 2013. Geomorphons—a pattern recognition approach to classification and mapping of landforms. Geomorphology, 182, 147–156. doi:10.1016/j.geomorph.2012.11.005
  • Jordán, G., et al., 2005. Extraction of morphotectonic features from DEMs: development and applications for study areas in hungary and NW Greece. International Journal of Applied Earth Observation and Geoinformation, 7 (3), 163–182. doi:10.1016/j.jag.2005.03.003
  • Khan, S. and Shah, M. 2001. Object based segmentation of video using color, motion and spatial information. In: Proceedings of Computer Vision and Pattern Recognition, 8–14 December, Kauai, HI, USA: IEEE Computer Society, II-747 - II-751.
  • Khotanzad, A. and Zink, E., 2003. Contour line and geographic feature extraction from USGS color topographical paper maps. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25 (1), 18–31. doi:10.1109/TPAMI.2003.1159943
  • Krishnan, S., et al., 2011. OpenTopography: a services oriented architecture for community access to LIDAR topography. In: Proceedings of the 2nd International Conference on Computing for Geospatial Research & Applications. 23–25 May, Washington, DC: ACM, 7.
  • Lee, J., et al., 1992. Modeling the effect of data errors on feature extraction from digital elevation models. Photogrammetric Engineering and Remote Sensing, 58 (10), 1461–1467.
  • Li, W., Zhou, X., and Wu, S., 2016. An integrated software framework to support semantic modeling and reasoning of spatiotemporal change of geographical objects: a use case of land use and land cover change study. ISPRS International Journal of Geo-Information, 5 (10), 179. doi:10.3390/ijgi5100179
  • Lin, C.S., 1997. Waveform sampling lidar applications in complex terrain. International Journal of Remote Sensing, 18 (10), 2087–2104. doi:10.1080/014311697217774
  • Lin, H., Zhao, C.S., and Shu, N., 2003. Edge detection based on Canny operator and evaluation. Journal of Heilongjiang Institute of Technology, 2, 3–6.
  • Lindsay, J.B. and Dhun, K., 2015. Modelling surface drainage patterns in altered landscapes using LiDAR. International Journal of Geographical Information Science, 29 (3), 397–411. doi:10.1080/13658816.2014.975715
  • Liu, X., 2008. Airborne LiDAR for DEM generation: some critical issues. Progress in Physical Geography, 32 (1), 31–49. doi:10.1177/0309133308089496
  • Liu, X. and Zhang, Z., 2011. Drainage network extraction using LiDAR‐derived DEM in volcanic plains. Area, 43 (1), 42–52. doi:10.1111/j.1475-4762.2010.00955.x
  • Mayer, H., 2008. Object extraction in photogrammetric computer vision. ISPRS Journal of Photogrammetry and Remote Sensing, 63 (2), 213–222. doi:10.1016/j.isprsjprs.2007.08.008
  • Mikulska, K.S., Krupowicz, W., and Sajnуg, N. 2014. Methodology of validation of agricultural real properties in Poland with the use of geographic information system tools. In: Proceedings of 14th SGEM GeoConference on Informatics, Geoinformatics and Remote Sensing, 17–26 June, Bulgaria: SGEM, 345–356. doi:10.3389/fnagi.2014.00345
  • Minár, J. and Evans, I.S., 2008. Elementary forms for land surface segmentation: the theoretical basis of terrain analysis and geomorphological mapping. Geomorphology, 95 (3), 236–259. doi:10.1016/j.geomorph.2007.06.003
  • Molloy, I. and Stepinski, T.F., 2007. Automatic mapping of valley networks on Mars. Computers & Geosciences, 33 (6), 728–738. doi:10.1016/j.cageo.2006.09.009
  • Moore, I.D., et al., 1993. Soil attribute prediction using terrain analysis. Soil Science Society of America Journal, 57 (2), 443–452. doi:10.2136/sssaj1993.572NPb
  • Naik, S.K. and Murthy, C.A., 2006. Standardization of edge magnitude in color images. IEEE Transactions on Image Processing, 15 (9), 2588–2595. doi:10.1109/TIP.2006.877408
  • Passalacqua, P., Tarolli, P., and Foufoula-Georgiou, E., 2010. Testing space‐scale methodologies for automatic geomorphic feature extraction from lidar in a complex mountainous landscape. Water Resources Research, 46, 11. doi:10.1029/2009WR008812
  • Passalacqua, P., Tarolli, P., and Foufoula-Georgiou, E., 2012. Automatic geomorphic feature extraction from lidar in flat and engineered landscapes. Water Resources Research, 48, 3. doi:10.1029/2011WR010958
  • Pirotti, F. and Tarolli, P., 2010. Suitability of LiDAR point density and derived landform curvature maps for channel network extraction. Hydrological Processes, 24 (9), 1187–1197. doi:10.1002/hyp.7582
  • Richardson, M.C., Fortin, M.J., and Branfireun, B.A., 2009. Hydrogeomorphic edge detection and delineation of landscape functional units from lidar digital elevation models. Water Resources Research, 45, 10. doi:10.1029/2008WR007518
  • Samberg, A. (2007). An implementation of the ASPRS LAS standard. In: Proceedings of ISPRS Workshop on Laser Scanning and SilviLaser, 12–14 September, Espoo, Finland: ISPRS, 363–372.
  • Saraf, A.K., et al., 2004. GIS based surface hydrological modelling in identification of groundwater recharge zones. International Journal of Remote Sensing, 25 (24), 5759–5770. doi:10.1080/0143116042000274096
  • Shi, X. and Xue, B., 2016. Deriving a minimum set of viewpoints for maximum coverage over any given digital elevation model data. International Journal of Digital Earth, 9 (12), 1153–1167. doi:10.1080/17538947.2016.1207718
  • Sobel, I., 1990. An isotropic 3 × 3 image gradient operator. Machine Vision for Three-Dimensional Sciences. doi:10.13140/RG.2.1.1912.4965
  • Sofia, G., Fontana, G.D., and Tarolli, P., 2014. High-resolution topography and anthropogenic feature extraction: testing geomorphometric parameters in floodplains. Hydrological Processes, 28 (4), 2046–2061. doi:10.1002/hyp.9727
  • Sofia, G., et al., 2011. An objective approach for feature extraction: distribution analysis and statistical descriptors for scale choice and channel network identification. Hydrology and Earth System Sciences, 15 (5), 1387–1402. doi:10.5194/hess-15-1387-2011
  • Soille, P. and Pesaresi, M., 2002. Advances in mathematical morphology applied to geoscience and remote sensing. IEEE Transactions on Geoscience and Remote Sensing, 40 (9), 2042–2055. doi:10.1109/TGRS.2002.804618
  • Tarolli, P., 2014. High-resolution topography for understanding Earth surface processes: opportunities and challenges. Geomorphology, 216, 295–312. doi:10.1016/j.geomorph.2014.03.008
  • Tarolli, P., Sofia, G., and Dalla, F.G., 2012. Geomorphic features extraction from high-resolution topography: landslide crowns and bank erosion. Natural Hazards, 61 (1), 65–83. doi:10.1007/s11069-010-9695-2
  • Thommeret, N., Bailly, J.S., and Puech, C., 2010. Extraction of thalweg networks from DTMs: application to badlands. Hydrology and Earth System Sciences, 14 (8), 1527–1536. doi:10.5194/hess-14-1527-2010
  • Usery, E.L., et al., 2004. Geospatial data resampling and resolution effects on watershed modeling: a case study using the agricultural non-point source pollution model. Journal of Geographical Systems, 6 (3), 286–309. doi:10.1007/s10109-004-0138-z
  • Vogelmann, J.E., et al., 2011. Monitoring landscape change for LANDFIRE using multi-temporal satellite imagery and ancillary data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4 (2), 252–264. doi:10.1109/JSTARS.2010.2044478
  • Weber, K.T., 2006. Challenges of integrating geospatial technologies into rangeland research and management. Rangeland Ecology & Management, 59 (1), 38–43. doi:10.2111/05-010R.1
  • Wood, J., 1996. The geomorphological characterisation of digital elevation models. Ph.D. thesis. University of Leicester, UK Available from: http://www.soi.city.ac.uk/jwo/phd
  • Zhang, J.X., Chang, K.T., and Wu, J.Q., 2008. Effects of DEM resolution and source on soil erosion modelling: a case study using the WEPP model. International Journal of Geographical Information Science, 22 (8), 925–942. doi:10.1080/13658810701776817
  • Zhang, S., Zhao, B., and Erdun, E., 2014. Watershed characteristics extraction and subsequent terrain analysis based on digital elevation model in flat region. Journal of Hydrologic Engineering, 19 (11), 04014023. doi:10.1061/(ASCE)HE.1943-5584.0000961
  • Zhou, X. and Li, W., 2017. A geographic object-based approach for land classification using LiDAR elevation and intensity. IEEE Geoscience and Remote Sensing Letters, 14 (5), 669–673. doi:10.1109/LGRS.2017.2669994

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.