299
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Parallelization of the flow-path network model using a particle-set strategy

&
Pages 1984-2010 | Received 15 Jun 2018, Accepted 20 Mar 2019, Published online: 08 Apr 2019

References

  • Abbott, M.B., et al. 1986a. An introduction to the European hydrological system-systeme hydrologique Europeen, “SHE,” 1: History and philosophy of a physically-based, distributed modelling system. Journal of Hydrology, 87 (1–2), 45–59. doi:10.1016/0022-1694(86)90114-9
  • Abbott, M.B., et al. 1986b. An introduction to the European hydrological system-systeme hydrologique Europeen, “SHE,” 2: Structure of a physically-based, distributed modelling system. Journal of Hydrology, 87 (1), 61–77. doi:10.1016/0022-1694(86)90115-0
  • Amdahl, G.M., 1967. Validity of the single processor approach to achieving large scale computing capabilities. AFIPS Spring Joint Computing Conference. New York, USA: ACM, 483–485.
  • Andrade, D., et al. 2009. Task-parallel versus data-parallel library-based programming in multicore systems. 17th euromicro international conference on parallel, distributed and network-based processing, Weimar, Germany: IEEE, 101–110.
  • Apostolopoulos, T.K. and Georgakakos, K.P., 1997. Parallel computation for streamflow prediction with distributed hydrologic models. Journal of Hydrology, 197 (1–4), 1–24. doi:10.1016/S0022-1694(96)03281-7
  • Arnold, J.G., et al. 1998. Large area hydrologic modeling and assessment part I: model development. Journal of the American Water Resources Association, 34 (1), 73–89. doi:10.1111/j.1752-1688.1998.tb05961.x
  • Arnold, J.G., et al., 2012. Soil and Water Assessment Tool – Version 2012. College Station, Texas: Texas Water Resources Institute.
  • Arnold, J.G., Allen, P.M., and Bernhardt, G., 1993. A comprehensive surface-groundwater flow model. Journal of Hydrology, 142 (1–4), 47–69. doi:10.1016/0022-1694(93)90004-S
  • Beven, K.J., 2012. Rainfall-runoff modelling. 2nd ed. Chichester, West Sussex: John Wiley and Sons.
  • Beven, K.J. and Kirkby, M.J., 1979. A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 24 (1), 43–69. doi:10.1080/02626667909491834
  • Chen, Y., et al., 2012. Comparison of drainage-constrained methods for DEM generalization. Computers and Geosciences, 48, 41–49. doi:10.1016/j.cageo.2012.05.002
  • Chen, Y., et al. 2014. The simulation of surface flow dynamics using a flow-path network model. International Journal of Geographical Information Science, 28 (11), 2242–2260. doi:10.1080/13658816.2014.917312
  • Crawford, N.H. and Linsley, R.K., 1966. Digital simulation in hydrology, Stanford model IV. Stanford, California: Stanford University.
  • Cui, Z., et al. 2005. Parallelisation of a distributed hydrologic model. International Journal of Computer Applications in Technology, 22 (1), 42–52. doi:10.1504/IJCAT.2005.006802
  • Devia, G.K., Ganasri, B.P., and Dwarakish, G.S., 2015. A review on hydrological models. Aquatic Procedia, 4, 1001–1007. doi:10.1016/j.aqpro.2015.02.126
  • Grayson, R.B., et al. 2002. Advances in the use of observed spatial patterns of catchment hydrological response. Advances in Water Resources, 25 (8–12), 1313–1334. doi:10.1016/S0309-1708(02)00060-X
  • Grayson, R.B., Moore, I.D., and McMahon, T.A., 1992a. Physically based hydrologic modeling: 1. A terrain‐based model for investigative purposes. Water Resources Research, 28 (10), 2639–2658. doi:10.1029/92WR01258
  • Grayson, R.B., Moore, I.D., and McMahon, T.A., 1992b. Physically based hydrologic modeling: 2. Is the concept realistic? Water Resources Research, 28 (10), 2659–2666. doi:10.1029/92WR01259
  • Islam, M.N. and Sivakumar, B., 2002. Characterization and prediction of runoff dynamics: a nonlinear dynamical view. Advances in Water Resources, 25 (2), 179–190. doi:10.1016/S0309-1708(01)00053-7
  • Ivanov, V.Y., et al., 2004a. Catchment hydrologic response with a fully distributed triangulated irregular network model. Water Resources Research, 40, W11102. doi:10.1029/2004WR003218
  • Ivanov, V.Y., et al. 2004b. Preserving high-resolution surface and rainfall data in operational-scale basin hydrology: a fully-distributed physically-based approach. Journal of Hydrology, 298 (1–4), 80–111. doi:10.1016/j.jhydrol.2004.03.041
  • Knisel, W.G., 1980. CREAMS: A field-scale model for chemicals, runoff and erosion from agricultural management systems, U.S. Department of Agriculture, Conservation Research Report No. 26, 640.
  • Krause, P., Boyle, D.P., and Bäse, F., 2005. Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences, 5, 89–97. doi:10.5194/adgeo-5-89-2005
  • Li, C., et al., 2018a. Uncertainty modelling and analysis of volume calculations based on a regular grid digital elevation model (DEM). Computers and Geosciences, 114, 117–129. doi:10.1016/j.cageo.2018.01.002
  • Li, C., et al. 2018b. Uncertainty modeling and analysis of surface area calculation based on a regular grid digital elevation model (DEM). International Journal of Geographical Information Science, 32 (9), 1837–1859. doi:10.1080/13658816.2018.1469136
  • Li, T., et al. 2011. Dynamic parallelization of hydrological model simulations. Environmental Modelling and Software, 26 (12), 1736–1746. doi:10.1016/j.envsoft.2011.07.015
  • Liu, J., et al. 2014. A layered approach to parallel computing for spatially distributed hydrological modeling. Environmental Modelling and Software, 51 (C), 221–227. doi:10.1016/j.envsoft.2013.10.005
  • Liu, J., et al. 2016. A two-level parallelization method for distributed hydrological models. Environmental Modelling and Software, 80 (C), 175–184. doi:10.1016/j.envsoft.2016.02.032
  • Maidment, D.R., et al. 1996. Unit hydrograph derived from a spatially distributed velocity field. Hydrological Processes, 10 (6), 831–844. doi: 10.1002/(SICI)1099-1085(199606)10:6<831::AID-HYP374>3.0.CO;2-N
  • McCuen, R.H., 1982. A guide to hydrologic analysis using Scs methods. Upper Saddle River, New Jersey: Prentice Hall.
  • McDonnell, J.J., 2003. Where does water go when it rains? Moving beyond the variable source area concept of rainfall-runoff response. Hydrological Processes, 17 (9), 1869–1875. doi:10.1002/(ISSN)1099-1085
  • Message Passing Interface Forum, 2015. MPI: A Message-Passing Interface Standard – Version 3.1. Stuttgart, Germany: University of Stuttgart.
  • Moore, I.D. and Grayson, R.B., 1991. Terrain‐based catchment partitioning and runoff prediction using vector elevation data. Water Resources Research, 27 (6), 1177–1191. doi:10.1029/91WR00090
  • Moradkhani, H., et al., 2008. General review of rainfall-runoff modeling: Model calibration, data assimilation, and uncertainty analysis. In: S. Sorooshian, ed. Hydrological modelling and the water cycle. Berlin, Heidelberg: Springer Berlin Heidelberg, 1–24.
  • Nguyen, P., et al., 2016. A high resolution coupled hydrological-hydraulic model (HiResFlood-UCI) for flash flood modeling. Journal of Hydrology, 541, 401–420.
  • Qin, C.-Z., et al. 2014. A strategy for raster-based geocomputation under different parallel computing platforms. International Journal of Geographical Information Science, 28 (11), 2127–2144. doi:10.1080/13658816.2014.911300
  • Qin, C.-Z. and Zhan, L., 2012. Parallelizing flow-accumulation calculations on graphics processing units-from iterative DEM preprocessing algorithm to recursive multiple-flow-direction algorithm. Computers and Geosciences, 43 (C), 7–16. doi:10.1016/j.cageo.2012.02.022
  • Qu, Y. and Duffy, C.J., 2007. A semidiscrete finite volume formulation for multiprocess watershed simulation. Water Resources Research, 43 (8), W08419. doi:10.1029/2006WR005752
  • Rodríguez-Iturbe, I., et al. 1982. A geomorphoclimatic theory of the instantaneous unit hydrograph. Water Resources Research, 18 (4), 877–886. doi:10.1029/WR018i004p00877
  • Rodríguez-Iturbe, I. and Valdés, J.B., 1979. The geomorphologic structure of hydrologic response. Water Resources Research, 15 (6), 1409–1420. doi:10.1029/WR015i006p01409
  • Rui, X., et al. 2008. Calculation of watershed flow concentration based on the grid drop concept. Water Science and Engineering, 1 (1), 1–9. doi:10.1016/S1674-2370(15)30013-2
  • Shao, Q., et al., 2015. RunCA: A cellular automata model for simulating surface runoff at different scales. Journal of Hydrology, 529, 816–829. doi:10.1016/j.jhydrol.2015.09.003
  • Sippel, S., et al. 2017. Have precipitation extremes and annual totals been increasing in the world’s dry regions over the last 60 years? Hydrology and Earth System Sciences, 21 (1), 441–458. doi:10.5194/hess-21-441-2017
  • Sivakumar, B., et al. 2001. Evidence of chaos in the rainfall-runoff process. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 46 (1), 131–145. doi:10.1080/02626660109492805
  • Smith, M., et al. 2013. The distributed model intercomparison project - Phase 2: Experiment design and summary results of the western basin experiments. Journal of Hydrology, 507 (C), 300–329. doi:10.1016/j.jhydrol.2013.08.040
  • Smith, M.B., et al. 2004. The distributed model intercomparison project (DMIP): motivation and experiment design. Journal of Hydrology, 298 (1–4), 4–26. doi:10.1016/j.jhydrol.2004.03.040
  • Smith, M.B., et al. 2012. Results of the DMIP 2 Oklahoma experiments. Journal of Hydrology, 418–419 (C), 17–48. doi:10.1016/j.jhydrol.2011.08.056
  • Smith, M.B. and Gupta, H.V., 2012. The distributed model intercomparison project (DMIP) - Phase 2 experiments in the Oklahoma region, USA. Journal of Hydrology, 418–419, 1–2. doi:10.1016/j.jhydrol.2011.09.036
  • Tian, Y., et al. 2008. High-performance land surface modeling with a Linux cluster. Computers and Geosciences, 34 (11), 1492–1504. doi:10.1016/j.cageo.2007.12.014
  • Vivoni, E.R., et al. 2011. Real-world hydrologic assessment of a fully-distributed hydrological model in a parallel computing environment. Journal of Hydrology, 409 (1), 483–496. doi:10.1016/j.jhydrol.2011.08.053
  • Wang, H., et al. 2011. A common parallel computing framework for modeling hydrological processes of river basins. Parallel Computing, 37 (6–7), 302–315. doi:10.1016/j.parco.2011.05.003
  • Wood, E.F., Lettenmaier, D.P., and Zartarian, V.G., 1992. A land-surface hydrology parameterization with subgrid variability for general circulation models. Journal of Geophysical Research, 97 (D3), 2717–2728. doi:10.1029/91JD01786
  • Wu, Q., et al., 2019. An effective parallelization algorithm for DEM generalization based on CUDA. Environmental Modelling and Software, 114, 64–74. doi:10.1016/j.envsoft.2019.01.002
  • Zhang, A., et al. 2016. Double-layer parallelization for hydrological model calibration on HPC systems. Journal of Hydrology, 535 (C), 737–747. doi:10.1016/j.jhydrol.2016.01.024
  • Zhang, F., et al. 2017. An enhanced approach for surface flow routing over drainage-constrained triangulated irregular networks. Transactions in GIS, 22 (1), 43–57. doi:10.1111/tgis.12294
  • Zhao, R., 1992. The Xinanjiang model applied in China. Journal of Hydrology, 135 (1), 371–381. doi:10.1016/0022-1694(92)90096-E
  • Zhou, Q. and Chen, Y., 2011. Generalization of DEM for terrain analysis using a compound method. ISPRS Journal of Photogrammetry and Remote Sensing, 66 (1), 38–45. doi:10.1016/j.isprsjprs.2010.08.005
  • Zhou, Q., Pilesjö, P., and Chen, Y., 2011. Estimating surface flow paths on a digital elevation model using a triangular facet network. Water Resources Research, 47, W07522. doi:10.1029/2010WR009961

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.