583
Views
16
CrossRef citations to date
0
Altmetric
Research Articles

A representativeness-directed approach to mitigate spatial bias in VGI for the predictive mapping of geographic phenomena

&
Pages 1873-1893 | Received 08 Oct 2018, Accepted 30 Apr 2019, Published online: 10 May 2019

References

  • Anadón, J.D., et al., 2009. Evaluation of local ecological knowledge as a method for collecting extensive data on animal abundance. Conservation Biology, 23, 617–625. doi:10.1111/j.1523-1739.2008.01145.x
  • Boria, R.A., et al., 2014. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling, 275, 73–77. doi:10.1016/j.ecolmodel.2013.12.012
  • Brunsdon, C., 1995. Estimating probability surfaces for geographical point data: an adaptive kernel algorithm. Computer Geoscience, 21, 877–894. doi:10.1016/0098-3004(95)00020-9
  • Robbins, C.S., Bystrak, D. & Geissler, P.H. (1986). The breeding bird survey: its first fifteen years, 1965-1979 (No. FWS-PUB-157), Patuxent Wildlife Research Center. Laurel, MD.
  • Coleman, D.J., Georgiadou, Y., and Labonte, J., 2009. Volunteered Geographic Information: the nature and motivation of produsers. International Journal of Spatial Data Infrastructure Research, 4, 332–358.
  • Cortes, C., et al., 2008. Sample selection bias correction theory. Internationl Conference of Algorithmic Learn. Theory 2008 Oct 13 . Berlin, Heidelberg: Springer, 38–53.
  • Davis, L. (1991). Handbook of genetic algorithms.
  • Dudik, M., Schapire, R.E., and Phillips, S.J., 2005. Correcting sample selection bias in maximum entropy density estimation. Advances in Neural Information Processing Systems, 18 (17), 323–330.
  • Elith, J., et al., 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography (Cop.)., 29, 129–151. doi:10.1111/j.2006.0906-7590.04596.x
  • Fielding, A.H. and Bell, J.F., 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 38–49. doi:10.1017/S0376892997000088
  • Fink, D., et al., 2010. Spatiotemporal exploratory models for broad-scale survey data. Ecological Applications, 20, 2131–2147. doi:10.1890/09-1340.1
  • Fotheringham, A.S., Brunsdon, C., and Charlton, M., 2003. Geographically weighted regression: the analysis of spatially varying relationships. Chichester, UK: John Wiley & Sons, Limited.
  • Franklin, J. and Miller, J.A., 2009. Mapping species distributions: spatial inference and prediction. Cambridge: Cambridge University Press.
  • Goodchild, M.F., 2007. Citizens as sensors: the world of volunteered geography. GeoJournal, 69, 211–221. doi:10.1007/s10708-007-9111-y
  • Goodchild, M.F., Parks, B.O., and Steyaert, L.T. (1993). Environmental modeling with GIS.
  • Graham, E.A., Henderson, S., and Schloss, A., 2011. Using mobile phones to engage citizen scientists in research. Eos, Trans. Am. Geophys. Union 92, 313–315.
  • Gregoire, T.G. and Valentine, H.T., 2007. Sampling strategies for natural resources and the environment. Boca Raton, FL: CRC Press.
  • Guisan, A. and Zimmerman, N.E., 2000. Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147–186. doi:10.1016/S0304-3800(00)00354-9
  • Heckman, J.J., 1979. Sample selection bias as a specification error. Econometrica 47, 153–161.
  • Hijmans, R.J., et al., 2000. Assessing the geographic representativeness of genebank collections: the case of Bolivian wild potatoes. Conservation Biology, 14, 1755–1765. doi:10.1111/cbi.2000.14.issue-6
  • Jensen, R.R. and Shumway, J.M., 2010. Sampling our world. In: B. Gomez and J. III, J.P., eds.. Res. Methods Geogr. A Crit. Introd.. Malden, MA: John Wiley & Sons, 77–90.
  • Jolliffe, I.T., 2002. Principal component analysis and factor analysis. In: Principal Component Analysis (pp. 150–166). New York, NY: Springer.
  • Kadmon, R., Farber, O., and Danin, A., 2004. Effect of roadside bias on the accuracy of predictive maps produced by bioclimatic models. Ecological Applications, 14, 401–413. doi:10.1890/02-5364
  • Kelling, S., et al., 2013. Estimating species distributions-across space, through time, and with features of the environment. In: M. Atkinson, et al., eds.. DATA Bonanza Improv. Knowl. Discov. Sci. Eng. Bus. Hoboken, NJ: John Wiley & Sons, Inc., 441–458.
  • Le Digabel, S., 2011. Algorithm 909: NOMAD: nonlinear optimization with the MADS algorithm. ACM Transction Mathematical Software, 37, 44. doi:10.1145/1916461.1916468
  • Leitão, P.J., Moreira, F., and Osborne, P.E., 2011. Effects of geographical data sampling bias on habitat models of species distributions: a case study with steppe birds in southern Portugal. International Journal of Geographical Information Science, 25, 439–454. doi:10.1080/13658816.2010.531020
  • Margules, C.R. and Pressey, R.L., 2000. Systematic conservation planning. Nature, 405, 243–253. doi:10.1038/35012251
  • McBratney, A., Mendonça Santos, M., and Minasny, B., 2003. On digital soil mapping. Geoderma, 117, 3–52. doi:10.1016/S0016-7061(03)00223-4
  • Minasny, B. and McBratney, A.B., 2006. A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers & Geosciences, 32, 1378–1388. doi:10.1016/j.cageo.2005.12.009
  • Mitchell, M., 1998. An introduction to genetic algorithms. Cambridge, MA: MIT press.
  • Munson, A.M., et al., 2012. The ebird reference dataset, version 4.0. Cornell Lab Ornithol. Natl. Audubon Soc., Ithaca, NY. 1–11.
  • Pardieck, K.L., Jr., et al., 2016. North American Breeding Bird Survey Dataset 1966-2015, version 2015.1. U.S. Geological Survey, Patuxent Wildlife Research Center. Laurel, MD.
  • Pardo, I., et al., 2013. A novel method to handle the effect of uneven sampling effort in biodiversity databases. PLoS One, 8, e52786. doi:10.1371/journal.pone.0052786
  • Pedregosa, F., et al., 2012. Scikit-learn: machine Learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
  • Phillips, S.J., et al., 2009. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications, 19, 181–197. doi:10.1890/07-2153.1
  • Phillips, S.J., Anderson, R.P., and Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259. doi:10.1016/j.ecolmodel.2005.03.026
  • Phillips, S.J. and Dudík, M., 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography (Cop.)., 31, 161–175. doi:10.1111/j.0906-7590.2008.5203.x
  • Preston, C.R., 2000. Red-tailed hawk. 1st. Mechanicsburg, PA: Stackpole Books.
  • Qi, F. and Zhu, A.-X., 2003. Knowledge discovery from soil maps using inductive learning. International Journal of Geographical Information Science, 17, 771–795. doi:10.1080/13658810310001596049
  • Sauer, J.R., et al., 2013. The North American Breeding Bird Survey 1966-2011: summary Analysis and Species Accounts. North American Fauna, 79, 1–32. doi:10.3996/nafa.79.0001
  • Scott, D.W., 2015. Multivariate density estimation: theory, practice, and visualization. 2nd. Hoboken, New Jersey: John Wiley & Sons.
  • Scull, P., et al., 2003. Predictive soil mapping: a review. Progress in Physical Geography: Earth and Environment, 27, 171–197. doi:10.1191/0309133303pp366ra
  • Shimodaira, H., 2000. Improving predictive inference under covariate shift by weighting the log-likelihood function. Journal of Statistical Planning and Inference, 90, 227–244. doi:10.1016/S0378-3758(00)00115-4
  • Silverman, B.W., 1986. Density Estimation for Statistics and Data Analysis. Chapman and Hall, London, UK.
  • Sullivan, B.L., et al., 2009. eBird: A citizen-based bird observation network in the biological sciences. Biological Conservation, 142, 2282–2292. doi:10.1016/j.biocon.2009.05.006
  • Varela, S., et al., 2014. Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography (Cop.)., 37, 1084–1091.
  • Vella, F., 1998. Estimating Models with Sample Selection Bias: A Survey. The Journal of Human Resources, 33, 127–169. doi:10.2307/146317
  • Wilson, K.A., et al., 2005. Sensitivity of conservation planning to different approaches to using predicted species distribution data. Biological Conservation, 122, 99–112. doi:10.1016/j.biocon.2004.07.004
  • Yang, F., et al., 2008. Assessing the representativeness of the AmeriFlux network using MODIS and GOES data. Journal of Geophysical Research: Biogeosciences, 113, 1–11. doi:10.1029/2007JG000627
  • Yang, L., et al., 2013. An integrative hierarchical stepwise sampling strategy for spatial sampling and its application in digital soil mapping. International Journal of Geographical Information Science, 27, 1–23. doi:10.1080/13658816.2012.658053
  • Zhang, G., et al., 2016. Enabling point pattern analysis on spatial big data using cloud computing: optimizing and accelerating Ripley’s K function. International Journal of Geographical Information Science, 30, 2230–2252. doi:10.1080/13658816.2016.1170836
  • Zhang, G., et al., 2018a. Validity of historical volunteered geographic information: evaluating citizen data for mapping historical geographic phenomena. Transactions in GIS, 22, 149–164. doi:10.1111/tgis.2018.22.issue-1
  • Zhang, G., et al., 2018b. A heuristic-based approach to mitigating positional errors in patrol data for species distribution modeling. Transactions in GIS, 22, 202–216. doi:10.1111/tgis.2018.22.issue-1
  • Zhang, G., et al., 2018c. Modelling species habitat suitability from presence-only data using kernel density estimation. Ecological Indicators, 93, 387–396. doi:10.1016/j.ecolind.2018.04.002
  • Zhang, G. and Zhu, A.-X., 2018. The representativeness and spatial bias of volunteered geographic information: a review. Annals of GIS, 24, 151–162. doi:10.1080/19475683.2018.1501607
  • Zhang, G., Zhu, A.-X., and Huang, Q., 2017. A GPU-accelerated adaptive kernel density estimation approach for efficient point pattern analysis on spatial big data. International Journal of Geographical Information Science, 31, 2068–2097. doi:10.1080/13658816.2017.1324975
  • Zhu, A.-X., et al., 1997. Derivation of soil properties using a soil land inference model (SoLIM). Soil Science Society of America Journal, 61, 523–533. doi:10.2136/sssaj1997.03615995006100020022x
  • Zhu, A.-X., 1999. A personal construct-based knowledge acquisition process for natural resource mapping. International Journal of Geographical Information Science, 13, 119–141. doi:10.1080/136588199241382
  • Zhu, A.-X., et al., 2015. A citizen data-based approach to predictive mapping of spatial variation of natural phenomena. International Journal of Geographical Information Science, 29, 1864–1886. doi:10.1080/13658816.2015.1058387
  • Zhu, A.X. and Mackay, D.S., 2001. Effects of spatial detail of soil information on watershed modeling. Journal of Hydrology, 248, 54–77. doi:10.1016/S0022-1694(01)00390-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.