643
Views
19
CrossRef citations to date
0
Altmetric
Research Articles

Using a maximum entropy model to optimize the stochastic component of urban cellular automata models

, ORCID Icon, ORCID Icon, &
Pages 924-946 | Received 22 Mar 2019, Accepted 28 Oct 2019, Published online: 11 Nov 2019

References

  • Almeida, C.M., et al., 2008. Using neural networks and cellular automata for modelling intra‐urban land‐use dynamics. International Journal of Geographical Information Science, 22 (9), 943–963. doi:10.1080/13658810701731168.
  • Al-sharif, A.A.A. and Pradhan, B., 2015. A novel approach for predicting the spatial patterns of urban expansion by combining the chi-squared automatic integration detection decision tree, Markov chain and cellular automata models in GIS. Geocarto International, 30 (8), 858–881. doi:10.1080/10106049.2014.997308.
  • Arsanjani, J.J., et al., 2013. Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 21 (1), 265–275. doi:10.1016/j.jag.2011.12.014.
  • Barreira-Gonzalez, P., Gomez-Delgado, M., and Aguilera-Benavente, F., 2015. From raster to vector cellular automata models: a new approach to simulate urban growth with the help of graph theory. Computers Environment And Urban Systems, 54, 119–131. doi:10.1016/j.compenvurbsys.2015.07.004
  • Basse, R.M., Charif, O., and Bodis, K., 2016. Spatial and temporal dimensions of land use change in cross border region of Luxembourg. Development of a hybrid approach integrating GIS, cellular automata and decision learning tree models. Applied Geography, 67, 94–108. doi:10.1016/j.apgeog.2015.12.001
  • Bi, S., et al., 2016. 3-Dimensional modeling and simulation of the cloud based on cellular automata and particle system. Isprs International Journal of Geo-information, 5 (6). doi:10.3390/ijgi5060086.
  • Cherni, A., Chouzenoux, E., and Delsuc, M.-A., 2017. PALMA, an improved algorithm for DOSY signal processing. ANALYST, 142 (5), 772–779. doi:10.1039/c6an01902a.
  • Clarke, K.C. and Gaydos, L.J., 1998. Loose-coupling a cellular automaton model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore. International Journal of Geographical Information Science, 12 (7), 699–714. doi:10.1080/136588198241617.
  • Dahal, K.R. and Chow, T.E., 2014. An agent-integrated irregular automata model of urban land-use dynamics. International Journal of Geographical Information Science, 28 (11), 2281–2303. doi:10.1080/13658816.2014.917646.
  • Dahal, K.R. and Chow, T.E., 2015. Characterization of neighborhood sensitivity of an irregular cellular automata model of urban growth. International Journal of Geographical Information Science, 29 (3), 475–497. doi:10.1080/13658816.2014.987779.
  • Domencich, T.A. and McFadden, D., 1975. Urban travel demand: a behavioral analysis. Monograph. 10. doi:10.2307/134305.
  • Encinas, L.H., et al., 2007. Modelling forest fire spread using hexagonal cellular automata. Applied Mathematical Modelling, 31 (6), 1213–1227. doi:10.1016/j.apm.2006.04.001.
  • Feng, Y. and Tong, X., 2018. Dynamic land use change simulation using cellular automata with spatially nonstationary transition rules. Giscience & Remote Sensing, 55 (5), 678–698. doi:10.1080/15481603.2018.1426262.
  • Guan, Q., Wang, L., and Clarke, K.C., 2005. An artificial-neural-network-based, constrained ca model for simulating urban growth. Cartography and Geographic Information Science, 32 (4), 369–380. doi:10.1559/152304005775194746.
  • He, J., et al., 2018. Mining transition rules of cellular automata for simulating urban expansion by using the deep learning techniques. International Journal of Geographical Information Science, 32 (10), 2076–2097. doi:10.1080/13658816.2018.1480783.
  • Jaynes, E.T., 1957. Information theory and statistical mechanics. Physical Review, 106 (4), 620–630. doi:10.1007/s10955-011-0358-9.
  • Jaynes, E.T., 1982. On the rationale of maximum-entropy methods. Proceedings of the Ieee, 70 (9), 939–952. doi:10.1109/PROC.1982.12425.
  • Jiang, Y., He, S., and Li, X., (2008). A maximum entropy model for large-scale portfolio optimization. In 2008 International conference on risk management and engineering management, icrmem 2008, proceedings. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA: IEEE COMPUTER SOC, 610+. doi:10.1109/ICRMEM.2008.74
  • Kocabas, V. and Dragicevic, S., 2006. Assessing cellular automata model behaviour using a sensitivity analysis approach. Computers, Environment and Urban Systems, 30 (6), 921–953. doi:10.1016/j.compenvurbsys.2006.01.001.
  • Kumar, M., et al., 2017. Review of perspective, problems, challenges, and future scenario of metal contamination in the urban environment. Journal of Hazardous Toxic and Radioactive Waste, 21 (4). doi:10.1061/(ASCE)HZ.2153-5515.0000351.
  • Li, X. and Yeh, A.G.O., 2004. Data mining of cellular automata’s transition rules. International Journal of Geographical Information Science, 18 (8), 723–744. doi:10.1080/13658810410001705325.
  • Li, X. and Kong, X., (2007). Research on spatial state conversion rule mining and stochastic predicting based on CA. In Geoinformatics, p. 67530B. doi:10.1117/12.761358
  • Li, X., Liu, X., and Yu, L., 2014. A systematic sensitivity analysis of constrained cellular automata model for urban growth simulation based on different transition rules. International Journal of Geographical Information Science, 28 (7), 1317–1335. doi:10.1080/13658816.2014.883079.
  • Liao, J., et al., 2016. Incorporation of extended neighborhood mechanisms and its impact on urban land-use cellular automata simulations. Environmental Modelling & Software, 75, 163–175. doi:10.1016/j.envsoft.2015.10.014
  • Liu, X., et al., 2008. Simulating complex urban development using kernel-based non-linear cellular automata. Ecological Modelling, 211 (1), 169–181. doi:10.1016/j.ecolmodel.2007.08.024.
  • Liu, Y., Dai, L., and Xiong, H., 2015. Simulation of urban expansion patterns by integrating auto-logistic regression, Markov chain and cellular automata models. Journal of Environmental Planning and Management, 58 (6), 1113–1136. doi:10.1080/09640568.2014.916612.
  • Ma, S., Li, X., and Cai, Y., 2017. Delimiting the urban growth boundaries with a modified ant colony optimization model. Computers Environment and Urban Systems, 62, 146–155. doi:10.1016/j.compenvurbsys.2016.11.004
  • Machineni, L., et al., 2017. Influence of nutrient availability and quorum sensing on the formation of metabolically inactive microcolonies within structurally heterogeneous bacterial biofilms: an individual-based 3D cellular automata model. Bulletin of Mathematical Biology, 79 (3), 594–618. doi:10.1007/s11538-017-0246-9.
  • Manuel Garcia, A., et al., 2011. An analysis of the effect of the stochastic component of urban cellular automata models. Computers Environment and Urban Systems, 35 (4), 289–296. doi:10.1016/j.compenvurbsys.2010.11.001.
  • McFadden, D., 1977. Quantitative methods for analyzing travel behaviour of individuals: some recent developments. Cowles foundation discussion papers no. 474. New Haven, CT: Cowles Foundation for Research in Economics, Yale University.
  • Midha, N. and Mathur, P.K., 2010. Assessment of forest fragmentation in the conservation priority Dudhwa landscape, India using FRAGSTATS computed class level metrics. Journal of the Indian Society of Remote Sensing, 38 (3), 487–500. doi:10.1007/s12524-010-0034-6.
  • Mohammad-Djafari, A., 2015. Entropy, information theory, information geometry and bayesian inference in data, signal and image processing and inverse problems. Entropy, 17 (6), 3989–4027. doi:10.3390/e17063989.
  • Mustafa, A., et al., 2018a. Modelling built-up expansion and densification with multinomial logistic regression, cellular automata and genetic algorithm. Computers Environment and Urban Systems, 67, 147–156. doi:10.1016/j.compenvurbsys.2017.09.009
  • Mustafa, A., et al., 2018b. Comparing support vector machines with logistic regression for calibrating cellular automata land use change models. European Journal of Remote Sensing, 51 (1), 391–401. doi:10.1080/22797254.2018.1442179.
  • Mustafa, A., et al., 2018c. A time Monte Carlo method for addressing uncertainty in land-use change models. International Journal of Geographical Information Science, 32 (11), 2317–2333. doi:10.1080/13658816.2018.1503275.
  • Nagarajan, R., et al., 2015. Accelerated echo planar J-resolved spectroscopic imaging in prostate cancer: a pilot validation of non-linear reconstruction using total variation and maximum entropy. Nmr in Biomedicine, 28 (11), 1366–1373. doi:10.1002/nbm.3373.
  • Naghibi, F., Delavar, M.R., and Pijanowski, B., 2016. Urban growth modeling using cellular automata with multi-temporal remote sensing images calibrated by the artificial bee colony optimization algorithm. SENSORS, 16 (12). doi:10.3390/s16122122.
  • Okwuashi, O., et al. 2009. Enhancing a GIS cellular automata model of land use change using support vector machine. In: L. Di and A. Chen, eds. 2009 17th International conference on geoinformatics. 345 E 47TH ST, NEW YORK, NY 10017 USA: IEEE, Vol. 1–2, 1142+.
  • Ortigoza, G.M., 2015. Unstructured triangular cellular automata for modeling geographic spread. Applied Mathematics and Computation, 258, 520–536. doi:10.1016/j.amc.2015.01.116
  • Peeters, L., 2012. Gravity and spatial structure: the case of interstate migration in Mexico. Journal of Regional Science, 52 (5), 819–856. doi:10.1111/j.1467-9787.2012.00770.x.
  • Phillips, S.J., Anderson, R.P., and Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190 (3), 231–259. doi:10.1016/j.ecolmodel.2005.03.026.
  • Phillips, S.J. and Dudik, M., 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. ECOGRAPHY, 31 (2), 161–175. doi:10.1111/j.0906-7590.2008.5203.x.
  • Pontius, R.G., et al., 2008. Comparing the input, output, and validation maps for several models of land change. Annals of Regional Science, 42 (1), 11–37. doi:10.1007/s00168-007-0138-2.
  • Prakash, J., et al., 2018. Maximum entropy based non-negative optoacoustic tomographic image reconstruction. IEEE Transactions on Biomedical Engineering. doi:10.1109/TBME.2019.2892842.
  • Raines, G.L., 2002. Description and comparison of geologic maps with FRAGSTATS - a spatial statistics program. Computers and Geosciences, 28 (2), 169–177. doi:10.1016/S0098-3004(01)00030-9.
  • Shafizadeh-Moghadam, H., et al., 2017. Integration of genetic algorithm and multiple kernel support vector regression for modeling urban growth. Computers Environment and Urban Systems, 65, 28–40. doi:10.1016/j.compenvurbsys.2017.04.011
  • Shannon, C.E., 1948. A mathematical theory of communication. Bell System Technical Journal, 27 (3), 379–423. doi:10.1002/j.1538-7305.1948.tb01338.x.
  • Stevens, D., Dragicevic, S., and Rothley, K., 2007. iCity: A GIS–CA modelling tool for urban planning and decision making. Environmental Modelling & Software, 22 (6), 761–773. doi:10.1016/j.envsoft.2006.02.004.
  • Tobler, W.R., 1970. A computer movie simulating urban growth in the Detroit region. Economic Geography, 46 (sup1), 234–240. doi:10.2307/143141.
  • Wahyudi, A. and Liu, Y., 2016. Cellular automata for urban growth modelling: a review on factors defining transition rules. International Review for Spatial Planning and Sustainable Development, 4 (2), 60–75. doi:10.14246/irspsd.4.2_60.
  • Wang, H., et al., 2013. Simulating urban expansion using a cloud-based cellular automata model: a case study of Jiangxia, Wuhan, China. Landscape and Urban Planning, 110 (1), 99–112. doi:10.1016/j.landurbplan.2012.10.016.
  • White, R. and Engelen, G., 2000. High-resolution integrated modelling of the spatial dynamics of urban and regional systems. Computers, Environment and Urban Systems, 24 (5), 383–400. Retrieved from http://vision.fhg.de/wsc6/.
  • Wilson, A., 2010. Entropy in urban and regional modelling: retrospect and prospect. Geographical Analysis, 42 (4), 364–394. doi:10.4324/9780203142608.
  • Wu, F. and Webster, C.J., 1998. Simulation of land development through the integration of cellular automata and multicriteria evaluation. Environment and Planning B: Planning and Design, 25 (1), 103–126. doi:10.1068/b250103.
  • Wu, F., 1998. SimLand: A prototype to simulate land conversion through the integrated GIS and CA with AHP-derived transition rules. International Journal of Geographical Information Science, 12 (1), 63–82. doi:10.1080/136588198242012.
  • Wu, F., 2002. Calibration of stochastic cellular automata: the application to rural-urban land conversions. International Journal of Geographical Information Science, 16 (8), 795–818. doi:10.1080/13658810210157769.
  • Wu, H., et al., 2019. Examining the sensitivity of spatial scale in cellular automata Markov chain simulation of land use change. International Journal of Geographical Information Science, 33 (5), 1040–1061. doi:10.1080/13658816.2019.1568441.
  • Xia, C., et al., 2018. A high-performance cellular automata model for urban simulation based on vectorization and parallel computing technology. International Journal of Geographical Information Science, 32 (2), 399–424. doi:10.1080/13658816.2017.1390118.
  • Xu, L., et al., 2016. Performance of non-parametric algorithms for spatial mapping of tropical forest structure. Carbon Balance And Management. 11. doi:10.1186/s13021-016-0062-9.
  • Yang, Q., Li, X., and Shi, X., 2008. Cellular automata for simulating land use changes based on support vector machines. Computers and Geosciences, 34 (6), 592–602. doi:10.1016/j.cageo.2007.08.003.
  • Yang, Z., et al., (2014). A portfolio optimization model based on information entropy and fuzzy time series. In 2013 Sixth international conference on business intelligence and financial engineering (BIFE). 345 E 47TH ST, NEW YORK, NY 10017 USA: IEEE, 166–170. doi:10.1109/BIFE.2013.37
  • Yeh, A.G.O. and Li, X., 2006. Errors and uncertainties in urban cellular automata. Computers, Environment and Urban Systems, 30 (1), 10–28. doi:10.1016/j.compenvurbsys.2004.05.007.
  • Yu, A.T.W., et al., 2015. The key causes of urban-rural conflict in China. Habitat International, 49, 65–73. doi:10.1016/j.habitatint.2015.05.009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.