1,960
Views
54
CrossRef citations to date
0
Altmetric
Research Articles

A novel residual graph convolution deep learning model for short-term network-based traffic forecasting

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 969-995 | Received 19 Oct 2018, Accepted 23 Nov 2019, Published online: 02 Dec 2019

References

  • Abadi, M., et al., 2016. TensorFlow: a system for large-scale machine learning. In: 12th Symposium on Operating Systems Design and Implementation (OSDI), Savannah, GA, 265–283.
  • Box, G.E. and Pierce, D.A., 1970. Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. Journal of the American Statistical Association, 65, 1509–1526. doi:10.1080/01621459.1970.10481180
  • Cai, P., et al., 2016. A spatiotemporal correlative k-nearest neighbor model for short-term traffic multistep forecasting. Transportation Research Part C: Emerging Technologies, 62, 21–34. doi:10.1016/j.trc.2015.11.002
  • Castro-Neto, M., et al., 2009. Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions. Expert Systems with Applications, 36, 6164–6173. doi:10.1016/j.eswa.2008.07.069
  • Chen, J., et al., 2018. Fine-grained prediction of urban population using mobile phone location data. International Journal of Geographical Information Science, 32, 1770–1786. doi:10.1080/13658816.2018.1460753
  • Chen, P., et al., 2016. Short-term traffic states forecasting considering spatial–temporal impact on an urban expressway. Transportation Research Record, 2594, 61–72. doi:10.3141/2594-10
  • Cheng, T., et al., 2012. Spatio-temporal autocorrelation of road network data. Journal of Geographical Systems, 14, 389–413. doi:10.1007/s10109-011-0149-5
  • Cheng, T., et al., 2014. A dynamic spatial weight matrix and localized space–time autoregressive integrated moving average for network modeling. Geographical Analysis, 46, 75–97. doi:10.1111/gean.12026
  • Cheng, X., et al., 2018. Deeptransport: learning spatial-temporal dependency for traffic condition forecasting. In:2018 International Joint Conference on Neural Networks (IJCNN). IEEE, Rio, Brazil, 1–8.
  • Cui, Z., et al., 2018. High-order graph convolutional recurrent neural network: a deep learning framework for network-scale traffic learning and forecasting. arXiv Preprint arXiv:1802.07007.
  • Defferrard, M., et al., 2016. Convolutional neural networks on graphs with fast localized spectral filtering. Advances in Neural Information Processing Systems, Barcelona, Spain, 3844–3852.
  • Dia, H., 2001. An object-oriented neural network approach to short-term traffic forecasting. European Journal of Operational Research, 131, 253–261. doi:10.1016/S0377-2217(00)00125-9
  • Ding, Q.Y., et al., 2011. Forecasting traffic volume with space-time ARIMA model. Advanced Materials Research, 156, 979–983. Trans Tech Publ.
  • Feng, X., et al., 2018. Adaptive multi-kernel SVM with spatial-temporal correlation for short-term traffic flow prediction. IEEE Transactions on Intelligent Transportation Systems, 1–13. doi:10.1109/TITS.2018.2854913
  • Graves, A., 2013. Generating sequences with recurrent neural networks. arXiv Preprint arXiv:1308.0850.
  • Guo, J., et al., 2014. Adaptive Kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification. Transportation Research Part C: Emerging Technologies, 43, 50–64. doi:10.1016/j.trc.2014.02.006
  • Haworth, J., et al., 2014. Local online kernel ridge regression for forecasting of urban travel times. Transportation Research Part C: Emerging Technologies, 46, 151–178. doi:10.1016/j.trc.2014.05.015
  • He, K., et al., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, USA, 770–778.
  • Ke, J., et al., 2017. Short-term forecasting of passenger demand under on-demand ride services: A spatio-temporal deep learning approach. Transportation Research Part C: Emerging Technologies, 85, 591–608. doi:10.1016/j.trc.2017.10.016
  • Kingma, D.P. and Ba, J., 2014. Adam: a method for stochastic optimization. arXiv preprint. arXiv:1412.6980.
  • Kumar, K., et al., 2013. Short term traffic flow prediction for a non urban highway using artificial neural network. Procedia-Social and Behavioral Sciences, 104, 755–764. doi:10.1016/j.sbspro.2013.11.170
  • Li, Y. and Shahabi, C., 2018. A brief overview of machine learning methods for short-term traffic forecasting and future directions. SIGSPATIAL Special, 10, 3–9. doi:10.1145/3231541
  • Liao, S., et al., 2018. Large-scale short-term urban taxi demand forecasting using deep learning. In: Proceedings of the 23rd Asia and South Pacific design automation conference. IEEE Press, 428–433. doi:10.3803/EnM.2018.33.3.428
  • Lin, L., et al., 2018. Predicting station-level hourly demand in a large-scale bike-sharing network: A graph convolutional neural network approach. Transportation Research Part C: Emerging Technologies, 97, 258–276. doi:10.1016/j.trc.2018.10.011
  • Liu, L., et al., 2018a. Attentive crowd flow machines. arXiv Preprint arXiv:1809.00101.
  • Liu, Q., et al., 2018b. Short-term traffic speed forecasting based on attention convolutional neural network for arterials. Computer-Aided Civil and Infrastructure Engineering, 33, 999–1016. doi:10.1111/mice.2018.33.issue-11
  • Lv, Y., et al., 2015. Traffic flow prediction with big data: a deep learning approach. IEEE Transactions on Intelligent Transportation Systems, 16, 865–873.
  • Ma, X., et al., 2017. Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction. Sensors, 17, 818.
  • Min, X., et al., 2009. Short-term traffic flow forecasting of urban network based on dynamic STARIMA model. In: Intelligent transportation systems, 2009. ITSC’09. 12th international IEEE conference on. IEEE, St. Louis, MO, 1–6.
  • Ren, Y., et al., 2019a. A hybrid integrated deep learning model for the prediction of citywide spatio-temporal flow volumes. International Journal of Geographical Information Science, 1–22. doi:10.1080/13658816.2019.1652303
  • Ren, Y., et al., 2019b. Deep spatio-temporal residual neural networks for road-network-based data modeling. International Journal of Geographical Information Science, 33, 1894–1912. doi:10.1080/13658816.2019.1599895
  • Shaw, S.-L., et al., 2016. Human dynamics in the mobile and big data era. International Journal of Geographical Information Science, 30, 1687–1693. doi:10.1080/13658816.2016.1164317
  • Shu, Y., et al., 2003. Wireless traffic modeling and prediction using seasonal ARIMA models. In: Communications, 2003. ICC’03. IEEE international conference on. IEEE, Anchorage, AK, 1675–1679.
  • Smith, B.L., et al., 2002. Comparison of parametric and nonparametric models for traffic flow forecasting. Transportation Research Part C: Emerging Technologies, 10, 303–321. doi:10.1016/S0968-090X(02)00009-8
  • Sun, S., et al., 2006. A Bayesian network approach to traffic flow forecasting. IEEE Transactions on Intelligent Transportation Systems, 7, 124–132. doi:10.1109/TITS.2006.869623
  • Tian, Y. and Pan, L., 2015. Predicting short-term traffic flow by long short-term memory recurrent neural network. In: Smart City/SocialCom/SustainCom (SmartCity), 2015 IEEE international conference on. IEEE, Chengdu, China, 153–158.
  • Van Lint, J., et al., 2002. Freeway travel time prediction with state-space neural networks: modeling state-space dynamics with recurrent neural networks. Transportation Research Record: Journal of the Transportation Research Board, 1811, 30–39. doi:10.3141/1811-04
  • Vlahogianni, E.I., et al., 2007. Spatio-temporal short*term urban traffic volume forecasting using genetically optimized modular networks. Computer-Aided Civil and Infrastructure Engineering, 22, 317–325. doi:10.1111/j.1467-8667.2007.00488.x
  • Vlahogianni, E.I., et al., 2014. Short-term traffic forecasting: where we are and where we’re going. Transportation Research Part C: Emerging Technologies, 43, 3–19. doi:10.1016/j.trc.2014.01.005
  • Wang, X., et al., 2018. Efficient metropolitan traffic prediction based on graph recurrent neural network. arXiv Preprint arXiv:1811.00740.
  • Wei, Y. and Chen, M.-C., 2012. Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks. Transportation Research Part C: Emerging Technologies, 21, 148–162. doi:10.1016/j.trc.2011.06.009
  • Weisbrod, G., et al., 2003. Measuring economic costs of urban traffic congestion to business. Transportation Research Record: Journal of the Transportation Research Board, 1839, 98–106. doi:10.3141/1839-10
  • Wu, Y. and Tan, H., 2016. Short-term traffic flow forecasting with spatial-temporal correlation in a hybrid deep learning framework. arXiv Preprint arXiv:1612.01022.
  • Yang, Y., et al., 2017. Understanding structure of urban traffic network based on spatial-temporal correlation analysis. Modern Physics Letters B, 31, 1750230. doi:10.1142/S021798491750230X
  • Yao, H., et al., 2018. Revisiting spatial-temporal similarity: a deep learning framework for traffic prediction. arXiv Preprint arXiv:1803.01254.
  • Yu, B., et al., 2017a. Spatio-temporal graph convolutional neural network: a deep learning framework for traffic forecasting. arXiv Preprint arXiv:1709.04875.
  • Yu, G., et al., 2003. Short-term traffic flow forecasting based on Markov chain model. In: Intelligent vehicles symposium, 2003. Proceedings. IEEE. IEEE, Columbus, OH, 208–212.
  • Yu, H., et al., 2017b. Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks. Sensors, 17, 1501. doi:10.3390/s17071501
  • Zhang, J., et al. 2016. DNN-based prediction model for spatio-temporal data. In: Proceedings of the 24th ACM SIGSPATIAL international conference on advances in geographic information systems. ACM, 92. doi:10.2116/analsci.32.1267
  • Zhang, Y., et al., 2019. A graph deep learning method for short-term traffic forecasting on large road networks. Computer-Aided Civil and Infrastructure Engineering, 34, 877–896. doi:10.1111/mice.12450
  • Zhang, Y. and Cheng, T., 2019a. A deep learning approach to infer employment status of passengers by using smart card data. IEEE Transactions on Intelligent Transportation Systems, 1–19. doi:10.1109/TITS.2019.2896460
  • Zhang, Y. and Cheng, T., 2019b. Graph deep learning model for network-based predictive hotspot mapping of sparse spatio-temporal events. Computers, Environment and Urban Systems, 1–12. doi:10.1016/j.compenvurbsys.2019.101403
  • Zhao, Z., et al., 2017. LSTM network: a deep learning approach for short-term traffic forecast. IET Intelligent Transport Systems, 11, 68–75. doi:10.1049/iet-its.2016.0208

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.