825
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

A lightweight ensemble spatiotemporal interpolation model for geospatial data

, &
Pages 1849-1872 | Received 10 Aug 2019, Accepted 30 Jan 2020, Published online: 12 Feb 2020

References

  • Appice, A., et al., 2013. Data mining techniques in sensor networks: summarization, interpolation and surveillance. London: Springer.
  • Cai, P., et al. 2016. A spatiotemporal correlative k-nearest neighbor model for short-term traffic multistep forecasting. Transportation Research Part C: Emerging Technologies, 62, 21–34. doi:10.1016/j.trc.2015.11.002.
  • Chen, X., He, Z., and Sun, L., 2019. A Bayesian tensor decomposition approach for spatiotemporal traffic data imputation. Transportation Research Part C: Emerging Technologies, 98, 73–84. doi:10.1016/j.trc.2018.11.003
  • Cheng, S., et al. 2018a. Short-term traffic forecasting: an adaptive ST-KNN model that considers spatial heterogeneity. Computers, Environment and Urban Systems, 71, 186–198. doi:10.1016/j.compenvurbsys.2018.05.009.
  • Cheng, S., et al. 2018b. A spatiotemporal multi-view-based learning method for short-term traffic forecasting. ISPRS International Journal of Geo-Information, 7 (6), 218. doi:10.3390/ijgi7060218.
  • Cheng, S., et al. 2019. Multi-task and multi-view learning based on particle swarm optimization for short-term traffic forecasting. Knowledge-Based Systems, 180, 116–132. doi:10.1016/j.knosys.2019.05.023.
  • Cheng, S. and Lu, F., 2017. A two-step method for missing spatio-temporal data reconstruction. ISPRS International Journal of Geo-Information, 6 (7), 187. doi:10.3390/ijgi6070187.
  • Cheng, T., et al. 2014. Spatiotemporal data mining. In: M.M. Fischer and P. Nijkamp, eds.. Handbook of regional science. Berlin, Heidelberg: Springer Berlin Heidelberg, 1173–1193.
  • Cheng, T. and Wang, J., 2009. Accommodating spatial associations in DRNN for space–time analysis. Computers, Environment and Urban Systems, 33 (6), 409–418. doi:10.1016/j.compenvurbsys.2009.08.004.
  • Crosby, H., Damoulas, T., and Jarvis, S.A., 2019. Embedding road networks and travel time into distance metrics for urban modelling. International Journal of Geographical Information Science, 33 (3), 512–536. doi:10.1080/13658816.2018.1547386.
  • De Cesare, L., Myers, D.E., and Posa, D., 2001. Estimating and modeling space–time correlation structures. Statistics & Probability Letters, 51 (1), 9–14. doi:10.1016/S0167-7152(00)00131-0.
  • Demšar, J., 2006. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7 (Jan), 1–30.
  • Deng, M., et al. 2016. A hybrid method for interpolating missing data in heterogeneous spatio-temporal datasets. ISPRS International Journal of Geo-Information, 5 (2), 13. doi:10.3390/ijgi5020013.
  • Deng, M., et al. 2018a. Generating urban road intersection models from low-frequency GPS trajectory data. International Journal of Geographical Information Science, 32 (12), 2337–2361. doi:10.1080/13658816.2018.1510124.
  • Deng, M., et al. 2018b. Heterogeneous space–time artificial neural networks for space–time series prediction. Transactions in GIS, 22 (1), 183–201. doi:10.1111/tgis.2018.22.issue-1.
  • Du, Z., et al. 2018. Multistep-ahead forecasting of chlorophyll a using a wavelet nonlinear autoregressive network. Knowledge-Based Systems, 160, 61–70. doi:10.1016/j.knosys.2018.06.015.
  • Durán-Rosal, A.M., et al. 2016. Massive missing data reconstruction in ocean buoys with evolutionary product unit neural networks. Ocean Engineering, 117, 292–301. doi:10.1016/j.oceaneng.2016.03.053.
  • Friedman, M., 1937. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association, 32 (200), 675–701. doi:10.1080/01621459.1937.10503522.
  • Gafurov, A. and Bárdossy, A., 2009. Cloud removal methodology from MODIS snow cover product. Hydrol. Earth Syst. Sci., 13 (7), 1361–1373. doi:10.5194/hess-13-1361-2009.
  • Gao, Z., et al. 2015. A missing sensor data estimation algorithm based on temporal and spatial correlation. International Journal of Distributed Sensor Networks, 11 (10), 435391.
  • Gardner, E.S., 2006. Exponential smoothing: the state of the art—Part II. International Journal of Forecasting, 22 (4), 637–666. doi:10.1016/j.ijforecast.2006.03.005.
  • Habtemichael, F.G. and Cetin, M., 2016. Short-term traffic flow rate forecasting based on identifying similar traffic patterns. Transportation Research Part C: Emerging Technologies, 66, 61–78. doi:10.1016/j.trc.2015.08.017
  • Herring, R., et al. 2010. Estimating arterial traffic conditions using sparse probe data. 13th international IEEE conference on intelligent transportation systems, 19–22 Sept. 2010 Madeira Island, Portugal, 929–936.
  • Huang, G.-B., 2014. An insight into extreme learning machines: random neurons, random features and kernels. Cognitive Computation, 6 (3), 376–390. doi:10.1007/s12559-014-9255-2.
  • Huang, G.-B., Zhu, Q.-Y., and Siew, C.-K., 2006. Extreme learning machine: theory and applications. Neurocomputing, 70 (1), 489–501. doi:10.1016/j.neucom.2005.12.126.
  • Karpatne, A., et al. 2018. Machine learning for the geosciences: challenges and opportunities. IEEE Transactions on Knowledge and Data Engineering, 31 (8), 1544–1554. doi:10.1109/TKDE.2018.2861006.
  • Li, L., et al. 2019a. Missing value imputation for traffic-related time series data based on a multi-view learning method. IEEE Transactions on Intelligent Transportation Systems, 20 (8), 2933–2943. doi:10.1109/TITS.6979.
  • Li, L., Li, Y., and Li, Z., 2013. Efficient missing data imputing for traffic flow by considering temporal and spatial dependence. Transportation Research Part C: Emerging Technologies, 34, 108–120. doi:10.1016/j.trc.2013.05.008
  • Li, Y. and Parker, L.E., 2014. Nearest neighbor imputation using spatial–temporal correlations in wireless sensor networks. Information Fusion, 15, 64–79. doi:10.1016/j.inffus.2012.08.007
  • Li, Z., et al. 2019b. Fast Geographically Weighted Regression (FastGWR): a scalable algorithm to investigate spatial process heterogeneity in millions of observations. International Journal of Geographical Information Science, 33 (1), 155–175. doi:10.1080/13658816.2018.1521523.
  • Lu, F., et al. 2018. Modeling the heterogeneous traffic correlations in urban road systems using traffic-enhanced community detection approach. Physica A: Statistical Mechanics and Its Applications, 501, 227–237. doi:10.1016/j.physa.2018.02.062.
  • Lu, G.Y. and Wong, D.W., 2008. An adaptive inverse-distance weighting spatial interpolation technique. Computers & Geosciences, 34 (9), 1044–1055. doi:10.1016/j.cageo.2007.07.010.
  • Pravilovic, S., Appice, A., and Malerba, D., 2018. Leveraging correlation across space and time to interpolate geophysical data via CoKriging. International Journal of Geographical Information Science, 32 (1), 191–212. doi:10.1080/13658816.2017.1381338.
  • Qin, M., et al. 2019. A matrix completion-based multiview learning method for imputing missing values in buoy monitoring data. Information Sciences, 487, 18–30. doi:10.1016/j.ins.2019.02.057.
  • Ran, B., et al. 2016. Tensor based missing traffic data completion with spatial–temporal correlation. Physica A: Statistical Mechanics and Its Applications, 446, 54–63. doi:10.1016/j.physa.2015.09.105.
  • Rigol, J.P., Jarvis, C.H., and Stuart, N., 2001. Artificial neural networks as a tool for spatial interpolation. International Journal of Geographical Information Science, 15 (4), 323–343. doi:10.1080/13658810110038951.
  • Rumelhart, D.E., Hinton, G.E., and Williams, R.J., 1986. Learning representations by back-propagating errors. Nature, 323 (6088), 533–536. doi:10.1038/323533a0.
  • Shekhar, S., et al. 2015. Spatiotemporal data mining: A Computational Perspective. ISPRS International Journal of Geo-Information, 4 (4), 2306. doi:10.3390/ijgi4042306.
  • Sovilj, D., et al. 2016. Extreme learning machine for missing data using multiple imputations. Neurocomputing, 174, 220–231. doi:10.1016/j.neucom.2015.03.108.
  • Tak, S., Woo, S., and Yeo, H., 2016. Data-driven imputation method for traffic data in sectional units of road links. IEEE Transactions on Intelligent Transportation Systems, 17 (6), 1762–1771. doi:10.1109/TITS.2016.2530312.
  • Tang, K., Chen, S., and Liu, Z., 2018. Citywide spatial-temporal travel time estimation using big and sparse trajectories. IEEE Transactions on Intelligent Transportation Systems, 19 (12), 4023–4034. doi:10.1109/TITS.2018.2803085.
  • Tonini, F., et al. 2016. Spatio-temporal reconstruction of missing forest microclimate measurements. Agricultural and Forest Meteorology, 218–219, 1–10. doi:10.1016/j.agrformet.2015.11.004.
  • Wan, L., et al. 2018. A hybrid ensemble learning method for tourist route recommendations based on geo-tagged social networks. International Journal of Geographical Information Science, 32 (11), 2225–2246. doi:10.1080/13658816.2018.1458988.
  • Wang, S. and Armstrong, M.P., 2009. A theoretical approach to the use of cyberinfrastructure in geographical analysis. International Journal of Geographical Information Science, 23 (2), 169–193. doi:10.1080/13658810801918509.
  • Wang, Y., et al. 2019. Traffic data reconstruction via adaptive spatial-temporal correlations. IEEE Transactions on Intelligent Transportation Systems, 20 (4), 1531–1543. doi:10.1109/TITS.2018.2854968.
  • Wentz, E.A., Peuquet, D.J., and Anderson, S., 2010. An ensemble approach to space–time interpolation. International Journal of Geographical Information Science, 24 (9), 1309–1325. doi:10.1080/13658816.2010.488238.
  • Xu, C.-D., et al. 2013. Interpolation of missing temperature data at meteorological stations using P-BSHADE. Journal of Climate, 26 (19), 7452–7463. doi:10.1175/JCLI-D-12-00633.1.
  • Yi, X., et al., 2016. ST-MVL: filling missing values in geo-sensory time series data. Proceedings of the twenty-fifth international joint conference on artificial intelligence. New York, NY, USA: AAAI Press, 2704–2710.
  • Yu, Q., et al. 2013. Regularized extreme learning machine for regression with missing data. Neurocomputing, 102, 45–51. doi:10.1016/j.neucom.2012.02.040.
  • Yue, T.X. and Wang, S.H., 2010. Adjustment computation of HASM: a high-accuracy and high-speed method. International Journal of Geographical Information Science, 24 (11), 1725–1743. doi:10.1080/13658810903569580.
  • Zhang, L. and Zhang, D., 2017. Evolutionary cost-sensitive extreme learning machine. IEEE Transactions on Neural Networks and Learning Systems, 28 (12), 3045–3060. doi:10.1109/TNNLS.2016.2607757.
  • Zheng, Y., et al. 2014. Urban computing: concepts, methodologies, and applications. ACM Transaction on Intelligent Systems and Technology, 5 (3), 38.
  • Zheng, Z. and Su, D., 2014. Short-term traffic volume forecasting: A k-nearest neighbor approach enhanced by constrained linearly sewing principle component algorithm. Transportation Research Part C: Emerging Technologies, 43, 143–157. doi:10.1016/j.trc.2014.02.009
  • Zou, H., et al. 2012. An improved distance metric for the interpolation of link-based traffic data using kriging: a case study of a large-scale urban road network. International Journal of Geographical Information Science, 26 (4), 667–689. doi:10.1080/13658816.2011.609488.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.