611
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

An integrated method for DEM simplification with terrain structural features and smooth morphology preserved

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 273-295 | Received 30 Apr 2020, Accepted 22 Jun 2020, Published online: 29 May 2020

References

  • Ai, T. and Li, J., 2010. A DEM generalization by minor valley branch detection and grid filling. ISPRS Journal of Photogrammetry and Remote Sensing, 65 (2), 198–207. doi:10.1016/j.isprsjprs.2009.11.001
  • Chang, K., 2007. Introduction to geographic information systems. 4th. New York: McGraw-Hill, 450.
  • Chen, C. and Li, Y., 2013. An orthogonal least-square-based method for DEM generalization. International Journal of Geographical Information Science, 27 (1), 154–167. doi:10.1080/13658816.2012.674136
  • Chen, Y., et al., 2012. Comparison of drainage-constrained methods for DEM generalization. Computers & Geosciences, 48, 41–49. doi:10.1016/j.cageo.2012.05.002
  • Chen, Y. and Zhou, Q., 2013. A scale-adaptive DEM for multi-scale terrain analysis. International Journal of Geographical Information Science, 27 (7), 1329–1348. doi:10.1080/13658816.2012.739690
  • Chen, Z. and Guevara, J. 1987. Systematic selection of very important points (VIP) from digital terrain model for constructing triangular irregular networks. In: Proc. 8th International Symposium on Computer-Assisted Cartography, AutoCarto 8, Baltimore, MD, 29 March–3 April, 50–56.
  • De Floriani, L., 1989. A pyramidal data structure for triangle-based surface description. IEEE Computer Graphics and Applications, 9 (2), 67–78. doi:10.1109/38.19053
  • DOS Reis, A., et al. 2019. Volume estimation in a Eucalyptus plantation using multi-source remote sensing and digital terrain data: a case study in Minas Gerais State, Brazil. International Journal of Remote Sensing, 40 (7), 2683–2702. doi:10.1080/01431161.2018.1530808
  • Douglas, D.H. and Peucker, T.K., 1973. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica: The International Journal for Geographic Information and Geovisualization, 10 (2), 112–122. doi:10.3138/FM57-6770-U75U-7727
  • Falorni, G., 2005. Analysis and characterization of the vertical accuracy of digital elevation models from the Shuttle Radar Topography Mission. Journal of Geophysical Research, 110 (F2). doi:10.1029/2003JF000113
  • Fowler, J. and Little, R., 1979. Automatic extraction of irregular network digital terrain models. SIGGRAPH ‘79 Conference Proceedings, August, 199–207. vol. 13. no. 2. ill. includes bibliography, 13. doi: 10.1145/965103.807444
  • Garcia, G.P.B. and Grohmann, C.H., 2019. DEM-based geomorphological mapping and landforms characterization of a tropical karst environment in Southeastern Brazil. Journal of South American Earth Sciences, 93, 14–22. doi:10.1016/j.jsames.2019.04.013
  • Grohmann, C.H., 2015. Effects of spatial resolution on slope and aspect derivation for regional-scale analysis. Geomorphometry and Geosciences, 77, 111–117.
  • Grohmann, C.H., 2016. Comparative analysis of global digital elevation models and ultra-prominent mountain peaks. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, III-4, 17–23. 03/06 2016. doi:10.5194/isprsannals-III-4-17-2016
  • Grohmann, C.H., Smith, M.J., and Riccomini, C., 2011. Multi-scale analysis of topographic surface roughness in the Midland Valley, Scotland. IEEE Transactions on Geoscience and Remote Sensing, 49, 1200–1213. doi:10.1109/TGRS.2010.2053546
  • Heckbert, P.S. and Garland, M., 1997. Survey of polygonal surface simplification algorithms. Technical Report. School of Computer Science, Carnegie Mellon University, Pittsburgh.
  • Hutchinson, M.F., 1989. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. Journal of Hydrology, 106 (3–4), 211–232. doi:10.1016/0022-1694(89)90073-5
  • Kaya, Ş., Müftüog˘lu, O., and Tüysüz, O., 2004. Tracing the geometry of an active fault using remote sensing and digital elevation model: ganos segment, North Anatolian Fault zone, Turkey. International Journal of Remote Sensing, 25 (19), 3843–3855. doi:10.1080/01431160310001652394
  • Kopf, J., et al., 2011. Joint bilateral upsampling. First publ. ACM Transactions on Graphics, 26 (2007), 3. Article No. 96, 26.
  • Lee, J.A.Y., 1991. Comparison of existing methods for building triangular irregular network, models of terrain from grid digital elevation models. International Journal of Geographical Information Systems, 5 (3), 267–285. doi:10.1080/02693799108927855
  • Liang, C. and Mackay, D.S., 2000. A general model of watershed extraction and representation using globally optimal flow paths and up-slope contributing areas. International Journal of Geographical Information Science, 14 (4), 337–358. doi:10.1080/13658810050024278
  • Lindsay, J.B., et al., 2019. LiDAR DEM smoothing and the preservation of drainage features. Remote Sensing, 11 (16). doi:10.3390/rs11161926
  • Liu, Z., et al., 2019. A novel anisotropic second order regularization for mesh denoising. Computer Aided Geometric Design, 71, 190–201. doi:10.1016/j.cagd.2019.04.013
  • Mark, D.M., 1984. Automatic detection of drainage networks from digital elevation models. Cartographica, 21 (2–3), 168–178. doi:10.3138/10LM-4435-6310-251R
  • Martinez, C., et al. 2010. An assessment of digital elevation models and their ability to capture geomorphic and hydrologic properties at the catchment scale*. International Journal of Remote Sensing, 31 (23), 6239–6257. doi:10.1080/01431160903403060
  • Miliaresis, G.C. and Argialas, D.P., 2002. Quantitative representation of mountain objects extracted from the global digital elevation model (GTOPO30). International Journal of Remote Sensing, 23 (5), 949–964. doi:10.1080/01431160110070690
  • Milledge, D.G., et al. 2009. The potential of digital filtering of generic topographic data for geomorphological research. Earth Surface Processes and Landforms, 34 (1), 63–74. doi:10.1002/esp.1691
  • Saunders, W., 2000. Preparation of DEMs for use in environmental modelling analysis. In: D. Maidment and D. Djokic, eds. Hydrologic and hydraulic modelling support with geographic information systems. Redlands: Environmental Systems Research Institute Inc, 29–51.
  • Smith-Konter, B. and Sandwell, D., 2003. Accuracy and resolution of shuttle radar topography mission data. Geophysical Research Letters, 30 (9), 1467.
  • Stevenson, J.A., et al. 2010. Despeckling SRTM and other topographic data with a denoising algorithm. Geomorphology, 114 (3), 238–252. doi:10.1016/j.geomorph.2009.07.006
  • Sun, X., et al. 2007. Fast and Effective Feature-Preserving Mesh Denoising. IEEE Transactions on Visualization and Computer Graphics, 13 (5), 925–938. doi:10.1109/TVCG.2007.1065
  • Tomasi, C. and Manduchi, R., 1998. Bilateral filtering for gray and color images. In: IEEE International Conference on Computer Vision. Bombay, 839–846.
  • Wang, H., et al. 2015. A chebyshev semi-iterative approach for accelerating projective and position-based dynamics. ACM Transactions on Graphics, 34 (6), 1–9. doi:10.1145/2816795.2818063
  • Yu, W., et al., 2020. Road network generalization considering traffic flow patterns. International Journal of Geographical Information Science, 34 (1), 119–149. doi:10.1080/13658816.2019.1650936
  • Zheng, Y., et al. 2011. Bilateral normal filtering for mesh denoising. IEEE Transactions on Visualization and Computer Graphics, 17 (10), 1521–1530. doi:10.1109/TVCG.2010.264
  • Zhou, Q. and Chen, Y., 2011. Generalization of DEM for terrain analysis using a compound method. ISPRS Journal of Photogrammetry and Remote Sensing, 66 (1), 38–45. doi:10.1016/j.isprsjprs.2010.08.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.