2,536
Views
30
CrossRef citations to date
0
Altmetric
Research Articles

Geographically and temporally neural network weighted regression for modeling spatiotemporal non-stationary relationships

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 582-608 | Received 20 Jan 2020, Accepted 26 May 2020, Published online: 16 Jun 2020

References

  • Brunsdon, C., Fotheringham, A.S., and Charlton, M.E., 1996. Geographically weighted regression: a method for exploring spatial nonstationarity. Geographical Analysis, 28, 281–298. doi:10.1111/j.1538-4632.1996.tb00936.x
  • Cahill, M. and Mulligan, G., 2007. Using geographically weighted regression to explore local crime patterns. Social Science Computer Review, 25, 174–193. doi:10.1177/0894439307298925
  • Cao, K., Diao, M., and Wu, B., 2019. A big data-based geographically weighted regression model for public housing prices: a case study in Singapore. Annals of the American Association of Geographers, 109, 173–186. doi:10.1080/24694452.2018.1470925
  • Chen, Q., et al., 2016. Impacts of land use and population density on seasonal surface water quality using a modified geographically weighted regression. Science of the Total Environment, 572, 450–466. doi:10.1016/j.scitotenv.2016.08.052.
  • Deng, L. and Yu, D., 2014. Deep learning: methods and applications. Foundations and Trends® in Signal Processing, 7, 197–387. doi:10.1561/2000000039
  • Dong, F., et al., 2020. Can industrial agglomeration promote pollution agglomeration? Evidence from China. Journal of Cleaner Production, 246. doi:10.1016/j.jclepro.2019.118960.
  • Du, Z., et al., 2018a. Extending geographically and temporally weighted regression to account for both spatiotemporal heterogeneity and seasonal variations in coastal seas. Ecological Informatics, 43, 185–199. doi:10.1016/j.ecoinf.2017.12.005.
  • Du, Z., et al., 2018b. A spatiotemporal regression-kriging model for space-time interpolation: a case study of chlorophyll-a prediction in the coastal areas of Zhejiang, China. International Journal of Geographical Information Science, 32, 1927–1947. doi:10.1080/13658816.2018.1471607.
  • Du, Z., et al., 2020. Geographically neural network weighted regression for the accurate estimation of spatial non-stationarity. International Journal of Geographical Information Science, 1–25. doi:10.1080/13658816.2019.1707834.
  • Fang, L., Li, H., and Li, M., 2019. Does hotel location tell a true story? Evidence from geographically weighted regression analysis of hotels in Hong Kong. Tourism Management, 72, 78–91. doi:10.1016/j.tourman.2018.11.010
  • Fotheringham, A.S., Brunsdon, C., and Charlton, M., 2002. Geographically weighted regression: the analysis of spatially varying relationships. UK: John Wiley & Sons.
  • Fotheringham, A.S., Crespo, R., and Yao, J., 2015. Geographical and temporal weighted regression (GTWR). Geographical Analysis, 47, 431–452. doi:10.1111/gean.12071
  • Fotheringham, A.S., Yang, W., and Kang, W., 2017. Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107, 1247–1265. doi:10.1080/24694452.2017.1352480
  • Ge, Y., et al., 2017. Geographically weighted regression-based determinants of malaria incidences in northern China. Transactions in Gis, 21, 934–953. doi:10.1111/tgis.12259.
  • Harris, R., Dong, G., and Zhang, W., 2013. Using contextualized geographically weighted regression to model the spatial heterogeneity of land prices in Beijing, China. Transactions in Gis, 17, 901–919. doi:10.1111/tgis.12020
  • He, K., et al., 2015. Delving deep into rectifiers: surpassing human-level performance on imagenet classification. Proceedings of the IEEE international conference on computer vision. Santiago, Chile.
  • Huang, B., Wu, B., and Barry, M., 2010. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. International Journal of Geographical Information Science, 24, 383–401. doi:10.1080/13658810802672469
  • Ioffe, S. and Szegedy, C., 2015. Batch normalization: accelerating deep network training by reducing internal covariate shift. Arxiv Preprint Arxiv, 1502.03167.
  • Jiang, Q., et al., 2019. Assessing the severe eutrophication status and spatial trend in the coastal waters of Zhejiang province (China). Limnology and Oceanography, 64, 3–17. doi:10.1002/lno.11013.
  • LeCun, Y., Bengio, Y., and Hinton, G., 2015. Deep learning. Nature, 521, 436. doi:10.1038/nature14539
  • Leung, Y., Mei, C.L., and Zhang, W.X., 2000. Statistical tests for spatial nonstationarity based on the geographically weighted regression model. Environment & Planning A, 32, 9–32. doi:10.1068/a3162
  • Li, X., et al., 2016. Exploring the impact of high speed railways on the spatial redistribution of economic activities - Yangtze River Delta urban agglomeration as a case study. Journal of Transport Geography, 57, 194–206. doi:10.1016/j.jtrangeo.2016.10.011.
  • Li, Z., et al., 2020. Measuring bandwidth uncertainty in multiscale geographically weighted regression using akaike weights. Annals of the American Association of Geographers. doi:10.1080/24694452.2019.1704680.
  • Liu, J., et al., 2017. A mixed geographically and temporally weighted regression: exploring spatial-temporal variations from global and local perspectives. Entropy, 19, 53. doi:10.3390/e19020053.
  • Lu, B., et al., 2016. The Minkowski approach for choosing the distance metric in geographically weighted regression. International Journal of Geographical Information Science, 30, 351–368. doi:10.1080/13658816.2015.1087001.
  • Qin, M., Li, Z., and Du, Z., 2017. Red tide time series forecasting by combining ARIMA and deep belief network. Knowledge-Based Systems, 125, 39–52.
  • Schmidhuber, J., 2015. Deep learning in neural networks: an overview. Neural Networks, 61, 85–117. doi:10.1016/j.neunet.2014.09.003
  • Selby, B. and Kockelman, K.M., 2013. Spatial prediction of traffic levels in unmeasured locations: applications of universal kriging and geographically weighted regression. Journal of Transport Geography, 29, 24–32. doi:10.1016/j.jtrangeo.2012.12.009
  • Srivastava, N., et al. 2014. Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15, 1929–1958.
  • Stein, R.E., Conley, J.F., and Davis, C., 2016. The differential impact of physical disorder and collective efficacy: a geographically weighted regression on violent crime. Geojournal, 81, 351–365. doi:10.1007/s10708-015-9626-6
  • Wang, W., et al., 2016. Local spatial variations analysis of smear-positive tuberculosis in Xinjiang using geographically weighted regression model. BMC Public Health, 16, 1058–1066.
  • Wu, B., Li, R., and Huang, B., 2014. A geographically and temporally weighted autoregressive model with application to housing prices. International Journal of Geographical Information Science, 28, 1186–1204. doi:10.1080/13658816.2013.878463
  • Wu, C., et al., 2019. Multiscale geographically and temporally weighted regression: exploring the spatiotemporal determinants of housing prices. International Journal of Geographical Information Science, 33, 489–511. doi:10.1080/13658816.2018.1545158.
  • Wu, S., 2018. The theory and method of geographically and temporally neural network weighted regression. (Doctor). Hangzhou, China: Zhejiang University.
  • Wu, S., et al., 2020. Modeling spatially anisotropic nonstationary processes in coastal environments based on a directional geographically neural network weighted regression. Science of the Total Environment, 709, 136097. doi:10.1016/j.scitotenv.2019.136097.
  • Xu, C., Zhao, J., and Liu, P., 2019. A geographically weighted regression approach to investigate the effects of traffic conditions and road characteristics on air pollutant emissions. Journal of Cleaner Production, 239, 118084.
  • Yang, Q., et al., 2019. The relationships between PM2.5 and aerosol optical depth (AOD) in mainland China: about and behind the spatio-temporal variations. Environmental Pollution, 248, 526–535. doi:10.1016/j.envpol.2019.02.071.
  • Ye, R., et al., 2017. Identification of coastal water quality by multivariate statistical techniques in two typical bays of northern Zhejiang province, East China Sea. Acta Oceanologica Sinica, 36, 1–10. doi:10.1007/s13131-017-0981-7.
  • Yu, H., et al., 2020. Inference in multiscale geographically weighted regression. Geographical Analysis, 52, 87–106. doi:10.1111/gean.12189.
  • Zeng, J., et al., 2019. The local variations in regional technological evolution: evidence from the rise of transmission and digital information technology in China’s technology space, 1992-2016. Applied Geography, 112. doi:10.1016/j.apgeog.2019.102080.
  • Zhai, L., et al., 2018. An improved geographically weighted regression model for PM2.5 concentration estimation in large areas. Atmospheric Environment, 181, 145–154. doi:10.1016/j.atmosenv.2018.03.017.
  • Zhang, F., et al., 2017. Ecosystem health assessment in coastal waters by considering spatio-temporal variations with intense anthropogenic disturbance. Environmental Modelling & Software, 96, 128–139. doi:10.1016/j.envsoft.2017.06.052.
  • Zhang, K., et al., 2019. Estimating spatio-temporal variations of PM2.5 concentrations using VIIRS-derived AOD in the Guanzhong basin, China. Remote Sensing, 11. doi:10.3390/rs11222679.
  • Zhang, T., et al., 2016. Ground Level PM2.5 estimates over China using satellite-based geographically weighted regression (GWR) models are improved by including NO2 and enhanced vegetation index (EVI). International Journal of Environmental Research and Public Health, 13. doi:10.3390/ijerph13121215.
  • Zhou, S. and Lin, R., 2019. Spatial-temporal heterogeneity of air pollution: the relationship between built environment and on-road PM2.5 at micro scale. Transportation Research Part D-Transport and Environment, 76, 305–322. doi:10.1016/j.trd.2019.09.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.