8,158
Views
103
CrossRef citations to date
0
Altmetric
Research Articles

A comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping

, ORCID Icon, & ORCID Icon
Pages 321-347 | Received 05 Jan 2020, Accepted 08 Aug 2020, Published online: 15 Sep 2020

References

  • Aditian, A., Kubota, T., and Shinohara, Y., 2018. Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia. Geomorphology, 318 (2018), 101–111. doi:10.1016/j.geomorph.2018.06.006.
  • Akgun, A., Dag, S., and Bulut, F., 2008. Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models. Environmental Geology, 54 (6), 1127–1143. doi:10.1007/s00254-007-0882-8.
  • Alizadeh, M., et al., 2018. Social vulnerability assessment using artificial neural network (ANN) model for earthquake hazard in Tabriz city, Iran. Sustainability, 10 (10), 3376. doi:10.3390/su10103376.
  • Althuwaynee, O.F., et al., 2014. A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. Catena, 114, 21–36. doi:10.1016/j.catena.2013.10.011.
  • Alvioli, M. and Baum, R.L., 2016. Parallelization of the TRIGRS model for rainfall-induced landslides using the message passing interface. Environmental Modelling and Software, 81, 122–135. doi:10.1016/j.envsoft.2016.04.002
  • Anagnostopoulos, G.G., Fatichi, S., and Burlando, P., 2015. An advanced process‐based distributed model for the investigation of rainfall‐induced landslides: the effect of process representation and boundary conditions. Water Resources Research, 51 (9), 7501–7523. doi:10.1002/2015WR016909.
  • Ayalew, L. and Yamagishi, H., 2005. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65 (1), 15–31. doi:10.1016/j.geomorph.2004.06.010.
  • Ayalew, L., Yamagishi, H., and Ugawa, N., 2004. Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides, 1 (1), 73–81. doi:10.1007/s10346-003-0006-9.
  • Bradley, A.P., 1997. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30 (7), 1145–1159. doi:10.1016/s0031-3203(96)00142-2.
  • Bueechi, E., et al., 2019. Regional-scale landslide susceptibility modelling in the Cordillera Blanca, Peru—a comparison of different approaches. Landslides, 16 (2), 395–407. doi:10.1007/s10346-018-1090-1.
  • Bui, D.T., et al., 2016. GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworks. Environmental Earth Sciences, 75 (14), 1101. doi:10.1007/s12665-016-5919-4.
  • Chen, W., et al., 2019. Spatial prediction of landslide susceptibility using gis-based data mining techniques of anfis with whale optimization algorithm (woa) and grey wolf optimizer (gwo). Applied Sciences, 9 (18), 3755. doi:10.3390/app9183755.
  • Chen, W., Panahi, M., and Pourghasemi, H. R., 2017. Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling. Catena, 157, 310–324. doi: 10.1016/j.catena.2017.05.034
  • Choubin, B., et al., 2019. An Ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Science of the Total Environment, 651, 2087–2096. doi:10.1016/j.scitotenv.2018.10.064.
  • Ciurleo, M., Cascini, L., and Calvello, M., 2017. A comparison of statistical and deterministic methods for shallow landslide susceptibility zoning in clayey soils. Engineering Geology, 223, 71–81. doi:10.1016/j.enggeo.2017.04.023
  • Collobert, R., and Weston, J., 2008. A unified architecture for natural language processing: deep neural networks with multitask learning. In: Proceedings of the 25th international conference on Machine learning. Helsinki, Finland: ACM, 160–167.
  • Cortes, C. and Vapnik, V., 1995. Support-vector networks. Machine Learning, 20 (3), 273–297. doi:10.1007/BF00994018.
  • Dietterich, T.G., 1997. Machine-learning research. Ai Magazine, 18 (4), 97. doi:10.1609/aimag.v18i4.1324.
  • Dormann, C.F., et al., 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36 (1), 27–46. doi:10.1111/j.1600-0587.2012.07348.x.
  • Dou, J., et al., 2019. Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan. Landslides. doi:10.1007/s10346-019-01286-5.
  • Eker, A.M., et al., 2015. Evaluation and comparison of landslide susceptibility mapping methods: a case study for the Ulus district, Bartın, northern Turkey. International Journal of Geographical Information Science, 29 (1), 132–158. doi:10.1080/13658816.2014.953164.
  • Erener, A., Mutlu, A., and Düzgün, H.S., 2016. A comparative study for landslide susceptibility mapping using GIS-based multi-criteria decision analysis (MCDA), logistic regression (LR) and association rule mining (ARM). Engineering Geology, 203, 45–55. doi:10.1016/j.enggeo.2015.09.007
  • Fang, Z., et al., 2020. Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping. Computers & Geosciences, 139, 104470. doi:10.1016/j.cageo.2020.104470.
  • Feizizadeh, B. and Blaschke, T., 2013. GIS-multicriteria decision analysis for landslide susceptibility mapping: comparing three methods for the Urmia lake basin, Iran. Natural Hazards, 65 (3), 2105–2128. doi:10.1007/s11069-012-0463-3.
  • Galli, M., et al., 2008. Comparing landslide inventory maps. Geomorphology, 94 (3–4), 268–289. doi:10.1016/j.geomorph.2006.09.023.
  • Ghorbanzadeh, O., et al., 2019. Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection. Remote Sensing, 11 (2), 196. doi:10.3390/rs11020196.
  • Graves, A., Mohamed, A.-R., and Hinton, G., 2013. Speech recognition with deep recurrent neural networks. In: IEEE international conference on acoustics, speech and signal processing. Vancouver, BC, Canada: IEEE, 6645–6649.
  • Guha-Sapir, D., Below, R., and Hoyois, P., 2020. EM-DAT: international disaster database. Brussels, Belgium: Université Catholique de Louvain. Available from: http://www.emdat.be [Accessed 3 March 2020].
  • Guzzetti, F., et al., 1999. Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31 (1–4), 181–216. doi:10.1016/S0169-555X(99)00078-1.
  • Guzzetti, F., et al., 2006. Estimating the quality of landslide susceptibility models. Geomorphology, 81 (1–2), 166–184. doi:10.1016/j.geomorph.2006.04.007.
  • Hajimoradlou, A., 2019. Predicting landslides using contour aligning convolutional neural networks. Thesis (PhD). University of British Columbia, Vancouver.
  • Han, J., et al., 2018. Advanced deep-learning techniques for salient and category-specific object detection: a survey. IEEE Signal Processing Magazine, 35 (1), 84–100. doi:10.1109/msp.2017.2749125.
  • Hong, H., et al., 2018. Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China). Catena, 163, 399–413. doi:10.1016/j.catena.2018.01.005.
  • Huang, F., et al., 2019. A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction. Landslides, 17, 1–13. doi:10.1007/s10346-019-01274-9.
  • Jaafari, A., et al., 2019. Meta optimization of an adaptive neuro-fuzzy inference system with grey wolf optimizer and biogeography-based optimization algorithms for spatial prediction of landslide susceptibility. Catena, 175, 430–445. doi:10.1016/j.catena.2018.12.033.
  • Kavzoglu, T., Sahin, E.K., and Colkesen, I., 2014. Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides, 11 (3), 425–439. doi:10.1007/s10346-013-0391-7.
  • King, G. and Zeng, L., 2001. Logistic regression in rare events data. Political Analysis, 9 (2), 137–163. doi:10.18637/jss.v008.i02.
  • Kira, K. and Rendell, L., 1992. A practical approach to feature selection. In: International conference on machine learning. San Francisco (CA): Morgan Kaufmann, 249–256
  • Ko, F.W. and Lo, F.L., 2018. From landslide susceptibility to landslide frequency: A territory-wide study in Hong Kong. Engineering Geology, 242, 12–22. doi:10.1016/j.enggeo.2018.05.001
  • Kornejady, A., Ownegh, M., and Bahremand, A., 2017. Landslide susceptibility assessment using maximum entropy model with two different data sampling methods. Catena, 152, 144–162. doi:10.1016/j.catena.2017.01.010
  • Korzh, O., et al., 2017. Stacking approach for CNN transfer learning ensemble for remote sensing imagery. In: 2017 Intelligent Systems Conference (IntelliSys). London, UK: IEEE, 599–608.
  • Kumar, D., et al., 2017. Landslide susceptibility mapping & prediction using support vector machine for Mandakini River Basin, Garhwal Himalaya, India. Geomorphology, 295, 115–125. doi:10.1016/j.geomorph.2017.06.013.
  • LeCun, Y., Bengio, Y., and Hinton, G., 2015. Deep learning. Nature, 521 (7553), 436. doi:10.1038/nature14539.
  • Lee, J., Kim, J., and Ko, W., 2019a. Day-ahead electric load forecasting for the residential building with a small-size dataset based on a self-organizing map and a stacking ensemble learning method. Applied Sciences, 9 (6), 1231. doi:10.3390/app9061231.
  • Lee, S., et al., 2019b. Sevucas: A novel gis-based machine learning software for seismic vulnerability assessment. Applied Sciences, 9 (17), 3495. doi:10.3390/app9173495.
  • Lee, S. and Pradhan, B., 2007. Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides, 4 (1), 33–41. doi:10.1007/s10346-006-0047-y.
  • Li, L.-J., et al., 2010. Object bank: A high-level image representation for scene classification & semantic feature sparsification. In: Advances in Neural Information Processing Systems. Vancouver, Canada: MIT Press, 1378–1386
  • Lombardo, L. and Mai, P.M., 2018. Presenting logistic regression-based landslide susceptibility results. Engineering Geology, 244, 14–24. doi:10.1016/j.enggeo.2018.07.019
  • Mandal, S. and Mandal, K., 2018. Modeling and mapping landslide susceptibility zones using GIS based multivariate binary logistic regression (LR) model in the Rorachu river basin of eastern Sikkim Himalaya, India. Modeling Earth Systems and Environment, 4 (1), 69–88. doi:10.1007/s40808-018-0426-0.
  • Manzo, G., et al., 2013. GIS techniques for regional-scale landslide susceptibility assessment: the Sicily (Italy) case study. International Journal of Geographical Information Science, 27 (7), 1433–1452. doi:10.1080/13658816.2012.693614.
  • Mutlu, B., et al., 2019. An experimental research on the use of recurrent neural networks in landslide susceptibility mapping. ISPRS International Journal of Geo-Information, 8 (12), 578. doi:10.3390/ijgi8120578.
  • Oh, H.-J. and Pradhan, B., 2011. Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Computers & Geosciences, 37 (9), 1264–1276. doi:10.1016/j.cageo.2010.10.012.
  • Othman, A.A., et al., 2018. Improving landslide susceptibility mapping using morphometric features in the Mawat area, Kurdistan Region, NE Iraq: comparison of different statistical models. Geomorphology, 319, 147–160. doi:10.1016/j.geomorph.2018.07.018.
  • Pham, B.T., et al., 2017. Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. Catena, 149, 52–63. doi:10.1016/j.catena.2016.09.007.
  • Pham, B.T., et al., 2018. A hybrid machine learning ensemble approach based on a radial basis function neural network and rotation forest for landslide susceptibility modeling: A case study in the Himalayan area, India. International Journal of Sediment Research, 33 (2), 157–170. doi:10.1016/j.ijsrc.2017.09.008.
  • Pham, B.T., et al., 2019a. A novel hybrid approach of landslide susceptibility modelling using rotation forest ensemble and different base classifiers. Geocarto International, 1–25. doi:10.1080/10106049.2018.1559885.
  • Pham, B.T., et al., 2019b. Landslide susceptibility modeling using reduced error pruning trees and different ensemble techniques: hybrid machine learning approaches. Catena, 175, 203–218. doi:10.1016/j.catena.2018.12.018.
  • Pham, B.T. and Prakash, I., 2018. Machine learning methods of kernel logistic regression and classification and regression trees for landslide susceptibility assessment at part of Himalayan area, India. Indian Journal of Science and Technology, 11. doi:10.17485/ijst/2018/v11i12/99745.
  • Pourghasemi, H.R., et al., 2019. Multi-hazard probability assessment and mapping in Iran. Science of the Total Environment, 692, 556–571. doi:10.1016/j.scitotenv.2019.07.203.
  • Pourghasemi, H.R., Pradhan, B., and Gokceoglu, C., 2012. Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Natural Hazards, 63 (2), 965–996. doi:10.1007/s11069-012-0217-2.
  • Pourghasemi, H.R. and Rahmati, O., 2018. Prediction of the landslide susceptibility: which algorithm, which precision? Catena, 162, 177–192. doi:10.1016/j.catena.2017.11.022
  • Pradhan, B., 2013. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences, 51, 350–365. doi:10.1016/j.cageo.2012.08.023
  • Reichenbach, P., et al., 2018. A review of statistically-based landslide susceptibility models. Earth-science Reviews, 180, 60–91. doi:10.1016/j.earscirev.2018.03.001.
  • Sameen, M.I. and Pradhan, B., 2019. Landslide detection using residual networks and the fusion of spectral and topographic information. IEEE Access, 7, 114363–114373. doi:10.1109/ACCESS.2019.2935761
  • Sameen, M.I., Pradhan, B., and Lee, S., 2019. Application of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessment. Catena, 186, 104249. doi:10.1016/j.catena.2019.104249
  • Sesmero, M.P., Ledezma, A.I., and Sanchis, A., 2015. Generating ensembles of heterogeneous classifiers using stacked generalization. Wiley Interdisciplinary Reviews. Data Mining and Knowledge Discovery, 5 (1), 21–34. doi:10.1002/widm.1143.
  • Shafizadeh-Moghadam, H., et al., 2018. Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping. Journal of Environmental Management, 217, 1–11. doi:10.1016/j.jenvman.2018.03.089.
  • Shahri, A.A., et al., 2019. Landslide susceptibility hazard map in southwest Sweden using artificial neural network. Catena, 183, 104225. doi:10.1016/j.catena.2019.104225.
  • Shirzadi, A., et al., 2017. Shallow landslide susceptibility assessment using a novel hybrid intelligence approach. Environmental Earth Sciences, 76 (2), 60. doi:10.1007/s12665-016-6374-y.
  • Sörensen, R., Zinko, U., and Seibert, J., 2006. On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrology and Earth System Sciences Discussions, 10 (1), 101–112. doi:10.5194/hess-10-101-2006.
  • Tehrany, M.S., et al., 2015. Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. Catena, 125 (125), 91–101. doi:10.1016/j.catena.2014.10.017.
  • Termeh, S.V.R., et al., 2018. Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Science of the Total Environment, 615, 438–451. doi:10.1016/j.scitotenv.2017.09.262.
  • Töscher, A. and Jahrer, M., 2009. The BigChaos Solution to the Netflix Grand Prize [online]. Available from: https://www.netflixprize.com/assets/GrandPrize2009_BPC_BigChaos.pdf
  • Truong, X., et al., 2018. Enhancing prediction performance of landslide susceptibility model using hybrid machine learning approach of bagging ensemble and logistic model tree. Applied Sciences, 8 (7), 1046. doi:10.3390/app8071046.
  • Tsangaratos, P., et al., 2017. Applying information theory and GIS-based quantitative methods to produce landslide susceptibility maps in Nancheng County, China. Landslides, 14 (3), 1091–1111. doi:10.1007/s10346-016-0769-4.
  • Tsangaratos, P. and Ilia, I., 2016. Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: the influence of models complexity and training dataset size. Catena, 145, 164–179. doi:10.1016/j.catena.2016.06.004
  • Ullo, S.L., et al., 2019. Landslide Geohazard assessment with convolutional neural networks using Sentinel-2 imagery data. In: IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama, Japan: IEEE, 9646–9649.
  • Wang, G., et al., 2011. A comparative assessment of ensemble learning for credit scoring. Expert Systems with Applications, 38 (1), 223–230. doi:10.1016/j.eswa.2010.06.048.
  • Wang, Q., et al., 2017. Integration of information theory, K-means cluster analysis and the logistic regression model for landslide susceptibility mapping in the Three Gorges Area, China. Remote Sensing, 9 (9), 938. doi:10.3390/rs9090938.
  • Wang, Y., et al., 2019c. Flood susceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm. Journal of Environmental Management, 247, 712–729. doi:10.1016/j.jenvman.2019.06.102.
  • Wang, Y., et al., 2019d. Stacking-based ensemble learning of decision trees for interpretable prostate cancer detection. Applied Soft Computing, 77, 188–204. doi:10.1016/j.asoc.2019.01.015.
  • Wang, Y., et al., 2020a. Flood susceptibility mapping using convolutional neural network frameworks. Journal Of Hydrology, 582, 124482. doi:10.1016/j.jhydrol.2019.124482.
  • Wang, Y., et al., 2020b. Comparative study of landslide susceptibility mapping with different recurrent neural networks. Computers & Geosciences, 138, 104445. doi:10.1016/j.cageo.2020.104445.
  • Wang, Y., Duan, H., and Hong, H., 2019a. A comparative study of composite kernels for landslide susceptibility mapping: A case study in Yongxin County, China. Catena, 183, 104217. doi:10.1016/j.catena.2019.104217.
  • Wang, Y., Fang, Z., and Hong, H., 2019b. Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China. Science of the Total Environment, 666, 975–993. doi:10.1016/j.scitotenv.2019.02.263.
  • Witten, I.H., et al., 2016. Data mining: practical machine learning tools and techniques. San Francisco: Morgan Kaufmann.
  • Wolpert, D.H., 1992. Stacked generalization. Neural Networks, 5 (2), 241–259. doi:10.1016/s0893-6080(05)80023-1.
  • Xiao, L., Zhang, Y., and Peng, G., 2018. Landslide susceptibility assessment using integrated deep learning algorithm along the China-Nepal Highway. Sensors, 18 (12), 4436. doi:10.3390/s18124436.
  • Yalcin, A., 2008. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. Catena, 72 (1), 1–12. doi:10.1016/j.catena.2007.01.003.
  • Yang, L. and Cervone, G., 2019. Analysis of remote sensing imagery for disaster assessment using deep learning: a case study of flooding event. Soft Computing, 23 (24), 13393–13408. doi:10.1007/s00500-019-03878-8.
  • Yu, X., et al., 2016. A combination of geographically weighted regression, particle swarm optimization and support vector machine for landslide susceptibility mapping: a case study at Wanzhou in the Three Gorges Area, China. International Journal of Environmental Research and Public Health, 13 (5), 487. doi:10.3390/ijerph13050487.