1,273
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

Analysis of the performance and robustness of methods to detect base locations of individuals with geo-tagged social media data

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 609-627 | Received 27 May 2020, Accepted 02 Nov 2020, Published online: 13 Nov 2020

References

  • Aaron, S. and Monica, A., 2018. Social media use in 2018 [online]. Available from: https://www.pewresearch.org/internet/2018/03/01/social-media-use-2018-appendix-a-detailed-table/ [Accessed 11 Aug 2020].
  • Bojic, I., et al. 2015. Choosing the right home location definition method for the given dataset. In: International Conference on Social Informatics. Beijing, China, 194–208.
  • Brodersen, K.H., et al. 2010. The balanced accuracy and its posterior distribution. ed. In: 2010 20th International Conference on Pattern Recognition. Istanbul, Turkey, 3121–3124.
  • Cesario, E., et al. 2016. Analyzing social media data to discover mobility patterns at EXPO 2015: methodology and results. ed. 2016 International Conference on High Performance Computing & Simulation (HPCS). Innsbruck, Austria, 230–237.
  • Chen, P., et al. 2019. STLP-GSM: a method to predict future locations of individuals based on geotagged social media data. International Journal of Geographical Information Science, 33 (12), 2337–2362.
  • Cho, E., Myers, S.A., and Leskovec, J. 2011. Friendship and mobility: user movement in location-based social networks. ed. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. San Diego, California, USA, 1082–1090.
  • Chua, A., et al. 2016. Mapping Cilento: using geotagged social media data to characterize tourist flows in southern Italy. Tourism Management, 57, 295–310.
  • Dong, L., et al. 2017. Measuring economic activity in China with mobile big data. EPJ Data Science, 6 (1), 29. doi:10.1140/epjds/s13688-017-0125-5
  • Gao, S., et al. 2013. Discovering spatial interaction communities from mobile phone data. Transactions in GIS, 17 (3), 463–481. doi:10.1111/tgis.12042
  • García, V., Mollineda, R.A., and Sánchez, J.S. 2009. Index of balanced accuracy: A performance measure for skewed class distributions. ed. In: Iberian conference on pattern recognition and image analysis. Póvoa de Varzim, Portugal, 441–448.
  • García-Palomares, J.C., Gutiérrez, J., and Mínguez, C., 2015. Identification of tourist hot spots based on social networks: A comparative analysis of European metropolises using photo-sharing services and GIS. Applied Geography, 63, 408–417.
  • Habib, M.B. and Krol, N.C., 2017. What does Twitter tell us about tourists’ mobility behavior? A Case study on tourists in The Netherlands and Belgium. Atlanta, Georgia, United States: PACIS, 34.
  • Hawelka, B., et al. 2014. Geo-located Twitter as proxy for global mobility patterns. Cartography and Geographic Information Science, 41 (3), 260–271. doi:10.1080/15230406.2014.890072
  • Huang, Q. and Wong, D.W.S., 2016. Activity patterns, socioeconomic status and urban spatial structure: what can social media data tell us? International Journal of Geographical Information Science, 30 (9), 1873–1898. doi:10.1080/13658816.2016.1145225
  • Jia, T., et al. 2019. Detecting the regional delineation from a network of social media user interactions with spatial constraint: A case study of Shenzhen, China. Physica A: Statistical Mechanics and Its Applications, 531, 121719. doi:10.1016/j.physa.2019.121719
  • Koutras, A., Nikas, I.A., and Panagopoulos, A., 2019. Towards developing smart cities: evidence from gis analysis on tourists’ behavior using social network data in the city of Athens. In: V. Katsoni and M. Segarra-Oña, eds. Smart tourism as a driver for culture and sustainability. Cham, Switzerland: Springer, 407–418.
  • Lee, J.Y. and Tsou, M.-H. 2018. Mapping spatiotemporal tourist behaviors and hotspots through location-based photo-sharing service (Flickr) data. ed. In: LBS 2018: 14th International Conference on Location Based Services. Zurich, Switzerland, 315–334.
  • Li, D. and Yang, Y., 2017. GIS monitoring of traveler flows based on big data. Analytics in smart tourism design. Cham, Switzerland: Springer, 111–126.
  • Li, Y., Fei, T., and Zhang, F., 2019. A regionalization method for clustering and partitioning based on trajectories from NLP perspective. International Journal of Geographical Information Science, 33 (12), 2385–2405. doi:10.1080/13658816.2019.1643025
  • Liu, Q., Wang, Z., and Ye, X., 2018. Comparing mobility patterns between residents and visitors using geo‐tagged social media data. Transactions in GIS, 22 (6), 1372–1389.
  • Mancini, F., Coghill, G.M., and Lusseau, D., 2018. Using social media to quantify spatial and temporal dynamics of nature-based recreational activities. PLoS One, 13 (7), e0200565. doi:10.1371/journal.pone.0200565
  • Paldino, S., et al. 2016. Uncovering urban temporal patterns from geo-tagged photography. PLoS One, 11 (12), e0165753. doi:10.1371/journal.pone.0165753
  • Salas-Olmedo, M.H., et al. 2018. Tourists’ digital footprint in cities: comparing big data sources. Tourism Management, 66, 13–25.
  • Sen, A. and Dietz, L.W., 2019. Identifying travel regions using location-based social network check-in data. Frontiers in Big Data, 2, 12. doi:10.3389/fdata.2019.00012
  • Silva, T.H., et al. 2013. A comparison of Foursquare and Instagram to the study of city dynamics and urban social behavior. ed. In: Proceedings of the 2nd ACM SIGKDD international workshop on urban computing. Chicago Illinois, USA, 1–8.
  • Sinclair, M., Ghermandi, A., and Sheela, A.M., 2018. A crowdsourced valuation of recreational ecosystem services using social media data: an application to a tropical wetland in India. Science of the Total Environment, 642, 356–365. doi:10.1016/j.scitotenv.2018.06.056
  • Sobolevsky, S., et al. 2017. Predicting regional economic indices using big data of individual bank card transactions. ed. In: 2017 IEEE International Conference on Big Data (Big Data). Boston, MA, USA, 1313–1318.
  • Soundararaj, B., Cheshire, J., and Longley, P., 2020. Estimating real-time high-street footfall from Wi-Fi probe requests. International Journal of Geographical Information Science, 34 (2), 325–343. doi:10.1080/13658816.2019.1587616
  • Su, S., et al. 2016. Characterizing geographical preferences of international tourists and the local influential factors in China using geo-tagged photos on social media. Applied Geography, 73, 26–37. doi:10.1016/j.apgeog.2016.06.001
  • Tenkanen, H., et al. 2017. Instagram, Flickr, or Twitter: assessing the usability of social media data for visitor monitoring in protected areas. Scientific Reports, 7 (1), 1–11. doi:10.1038/s41598-017-18007-4
  • Vanhoof, M., et al. 2018b. Assessing the quality of home detection from mobile phone data for official statistics. Journal of Official Statistics, 34 (4), 935–960.
  • Vanhoof, M., Lee, C., and Smoreda, Z., 2018a. Performance and sensitivities of home detection from mobile phone data. arXiv preprint. arXiv:1809.09911.
  • Vu, H.Q., et al. 2015. Exploring the travel behaviors of inbound tourists to Hong Kong using geotagged photos. Tourism Management, 46, 222–232. doi:10.1016/j.tourman.2014.07.003
  • Yang, X., et al. 2019. Spatial heterogeneity in spatial interaction of human movements—Insights from large-scale mobile positioning data. Journal of Transport Geography, 78, 29–40. doi:10.1016/j.jtrangeo.2019.05.010
  • Yao, Y., et al. 2019. A human-machine adversarial scoring framework for urban perception assessment using street-view images. International Journal of Geographical Information Science, 33 (12), 2363–2384. doi:10.1080/13658816.2019.1643024
  • Yuan, Y. and Medel, M., 2016. Characterizing international travel behavior from geotagged photos: A case study of flickr. PLoS One, 11 (5): e0154885.
  • Zhang, F., et al. 2020. Uncovering inconspicuous places using social media check-ins and street view images. Computers, Environment and Urban Systems, 81, 101478. doi:10.1016/j.compenvurbsys.2020.101478
  • Zheng, Y.-T., Zha, Z.-J., and Chua, T.-S., 2012. Mining travel patterns from geotagged photos. ACM Transactions on Intelligent Systems and Technology (TIST), 3 (3), 1–18. doi:10.1145/2168752.2168770
  • Zhou, B., et al. 2019. Semantic understanding of scenes through the ade20k dataset. International Journal of Computer Vision, 127 (3), 302–321. doi:10.1007/s11263-018-1140-0
  • Zhu, D., et al. 2018. Inferring spatial interaction patterns from sequential snapshots of spatial distributions. International Journal of Geographical Information Science, 32 (4), 783–805. doi:10.1080/13658816.2017.1413192
  • Zhu, D., et al. 2020. Understanding place characteristics in geographic contexts through graph convolutional neural networks. Annals of the American Association of Geographers, 110 (2), 408–420. doi:10.1080/24694452.2019.1694403

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.