595
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Cost distances and least cost paths respond differently to cost scenario variations: a sensitivity analysis of ecological connectivity modeling

, &
Pages 1652-1676 | Received 06 Jul 2021, Accepted 02 Dec 2021, Published online: 21 Dec 2021

References

  • Adriaensen, F., et al. 2003. The application of least-cost modelling as a functional landscape model. Landscape and Urban Planning, 64 (4), 233–247. doi:10.1016/S0169-2046(02)00242-6
  • Balbi, M., et al., 2019. Ecological relevance of least cost path analysis: an easy implementation method for landscape urban planning. Journal of Environmental Management, 244, 61–68. doi:10.1016/j.jenvman.2019.04.124
  • Balkenhol, N., et al. 2013. Landscape-level comparison of genetic diversity and differentiation in a small mammal inhabiting different fragmented landscapes of the Brazilian Atlantic Forest. Conservation Genetics, 14 (2), 355–367. doi:10.1007/s10592-013-0454-2
  • Beier, P., Majka, D.R., and Newell, S.L., 2009. Uncertainty analysis of least-cost modeling for designing wildlife linkages. Ecological Applications, 19 (8), 2067–2077. doi:10.1890/08-1898.1
  • Beier, P., Majka, D.R., and Spencer, W.D., 2008. Forks in the road: choices in procedures for designing wildland linkages. Conservation Biology, 22 (4), 836–851. doi:10.1111/j.1523-1739.2008.00942.x
  • Bowman, J., et al., 2020. Effects of cost surface uncertainty on current density estimates from circuit theory. PeerJ, 8, e9617. doi:10.7717/peerj.9617
  • Breiman, L., et al., 1984. Classification and regression trees. Boca Raton: CRC press.
  • Burnham, K.P. and Anderson, D.R., 2004. Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods & Research, 33 (2), 261–304. doi:10.1177/0049124104268644
  • Carrascal, L.M., Galván, I., and Gordo, O., 2009. Partial Least Squares regression as an alternative to current regression methods used in ecology. Oikos, 118 (5), 681–690. doi:10.1111/j.1600-0706.2008.16881.x
  • Carroll, C., McRae, B., and Brookes, A., 2012. Use of linkage mapping and centrality analysis across habitat gradients to conserve connectivity of gray wolf populations in western North America. Conservation Biology, 26 (1), 78–87. doi:10.1111/j.1523-1739.2011.01753.x
  • Clevenger, A.P., et al. 2002. GIS-generated, expert-based models for identifying wildlife habitat linkages and planning mitigation passages. Conservation Biology, 16 (2), 503–514. doi:10.1046/j.1523-1739.2002.00328.x
  • Cushman, S.A., Shirk, A.J., and Landguth, E.L., 2013. Landscape genetics and limiting factors. Conservation Genetics, 14 (2), 263–274. doi:10.1007/s10592-012-0396-0
  • de La Torre, J.A., et al., 2019. Using elephant movements to assess landscape connectivity under peninsular Malaysia’s central forest spine land use policy. Conservation Science and Practice, 1 (12), e133.
  • Duflot, R., et al., 2018. Combining habitat suitability models and spatial graphs for more effective landscape conservation planning: an applied methodological framework and a species case study. Journal for Nature Conservation, 46, 38–47. doi:10.1016/j.jnc.2018.08.005
  • Etherington, T.R. and Holland, E.P., 2013. Least-cost path length versus accumulated-cost as connectivity measures. Landscape Ecology, 28 (7), 1223–1229. doi:10.1007/s10980-013-9880-2
  • Etherington, T.R. and Perry, G.L., 2016. Visualising continuous intra-landscape isolation with uncertainty using least-cost modelling based catchment areas: common brushtail possums in the Auckland isthmus. International Journal of Geographical Information Science, 30 (1), 36–50. doi:10.1080/13658816.2014.926365
  • Foltête, J.C., Girardet, X., and Clauzel, C., 2014. A methodological framework for the use of landscape graphs in land-use planning. Landscape and Urban Planning, 124, 140–150. doi:10.1016/j.landurbplan.2013.12.012
  • Ford, A.T., et al. 2020. Effective corridor width: linking the spatial ecology of wildlife with land use policy. European Journal of Wildlife Research, 66 (4), 1–10. doi:10.1007/s10344-020-01385-y
  • Gonzales, E.K. and Gergel, S.E., 2007. Testing assumptions of cost surface analysis - a tool for invasive species management. Landscape Ecology, 22 (8), 1155–1168. doi:10.1007/s10980-007-9106-6
  • Graves, T.A., et al. 2012. The influence of landscape characteristics and home-range size on the quantification of landscape-genetics relationships. Landscape Ecology, 27 (2), 253–266. doi:10.1007/s10980-011-9701-4
  • Graves, T.A., Beier, P., and Royle, J.A., 2013. Current approaches using genetic distances produce poor estimates of landscape resistance to interindividual dispersal. Molecular Ecology, 22 (15), 3888–3903. doi:10.1111/mec.12348
  • Gurrutxaga, M., Lozano, P.J., and Del Barrio, G., 2010. GIS-based approach for incorporating the connectivity of ecological networks into regional planning. Journal for Nature Conservation, 18 (4), 318–326. doi:10.1016/j.jnc.2010.01.005
  • Hanski, I., Moilanen, A., and Gyllenberg, M., 1996. Minimum viable metapopulation size. The American Naturalist, 147 (4), 527–541. doi:10.1086/285864
  • Hoover, B., Yaw, S., and Middleton, R., 2020. CostMAP: an open-source software package for developing cost surfaces using a multi-scale search kernel. International Journal of Geographical Information Science, 34 (3), 520–538. doi:10.1080/13658816.2019.1675885
  • Inglada, J., et al. 2017. Operational high resolution land cover map production at the country scale using satellite image time series. Remote Sensing, 9 (1), 95. doi:10.3390/rs9010095
  • James, G., et al. 2013. An introduction to statistical learning. Vol. 112. New York: Springer.
  • Kadoya, T., 2009. Assessing functional connectivity using empirical data. Population Ecology, 51 (1), 5–15. doi:10.1007/s10144-008-0120-6
  • Khimoun, A., et al. 2017. Landscape genetic analyses reveal fine-scale effects of forest fragmentation in an insular tropical bird. Molecular Ecology, 26 (19), 4906–4919. doi:10.1111/mec.14233
  • Koen, E.L., Bowman, J., and Walpole, A.A., 2012. The effect of cost surface parameterization on landscape resistance estimates. Molecular Ecology Resources, 12 (4), 686–696. doi:10.1111/j.1755-0998.2012.03123.x
  • Lechner, A.M. and Rhodes, J.R., 2016. Recent progress on spatial and thematic resolution in landscape ecology. Current Landscape Ecology Reports, 1 (2), 98–105. doi:10.1007/s40823-016-0011-z
  • Mantel, N., 1967. The detection of disease clustering and a generalized regression approach. Cancer Research, 27 (2), 209–220.
  • Marrotte, R.R., Bowman, J., and Shi, Y., 2017. The relationship between least-cost and resistance distance. Plos One, 12 (3), e0174212. doi:10.1371/journal.pone.0174212
  • McGarigal, K., 1995. Fragstats: spatial pattern analysis program for quantifying landscape structure. Vol. 351. Portland, Oregon, US: US Department of Agriculture, Forest Service, Pacific Northwest Research Station.
  • McRae, B.H., 2006. Isolation by resistance. Evolution, 60 (8), 1551–1561. doi:10.1111/j.0014-3820.2006.tb00500.x
  • McRae, B.H. and Beier, P., 2007. Circuit theory predicts gene flow in plant and animal populations. Proceedings of the National Academy of Sciences, 104 (50), 19885–19890. doi:10.1073/pnas.0706568104
  • McRae, B.H. and Kavanagh, D.M., 2011. Linkage mapper connectivity analysis software. Seattle WA: The Nature Conservancy.
  • Mimet, A., Clauzel, C., and Foltête, J.C., 2016. Locating wildlife crossings for multispecies connectivity across linear infrastructures. Landscape Ecology, 31 (9), 1955–1973. doi:10.1007/s10980-016-0373-y
  • Mony, C., et al. 2018. Effects of connectivity on animal-dispersed forest plant communities in agriculture-dominated landscapes. Journal of Vegetation Science, 29 (2), 167–178. doi:10.1111/jvs.12606
  • Murekatete, R.M. and Shirabe, T., 2018. A spatial and statistical analysis of the impact of transformation of raster cost surfaces on the variation of least-cost paths. International Journal of Geographical Information Science, 32 (11), 2169–2188. doi:10.1080/13658816.2018.1498504
  • Panzacchi, M., et al. 2016. Predicting the continuum between corridors and barriers to animal movements using step selection functions and randomized shortest paths. Journal of Animal Ecology, 85 (1), 32–42. doi:10.1111/1365-2656.12386
  • Pérez-Espona, S., et al. 2008. Landscape features affect gene flow of Scottish Highland red deer (Cervus elaphus). Molecular Ecology, 17 (4), 981–996. doi:10.1111/j.1365-294X.2007.03629.x
  • Peterman, W.E., et al. 2019. A comparison of popular approaches to optimize landscape resistance surfaces. Landscape Ecology, 34 (9), 2197–2208. doi:10.1007/s10980-019-00870-3
  • Peterman, W.E. and Pope, N.S., 2020. The use and misuse of regression models in landscape genetic analyses. Molecular Ecology, 30 (1), 37–47. doi:10.1111/mec.15716
  • Pinto, N. and Keitt, T.H., 2009. Beyond the least-cost path: evaluating corridor redundancy using a graph-theoretic approach. Landscape Ecology, 24 (2), 253–266. doi:10.1007/s10980-008-9303-y
  • Pressey, R., 2004. Conservation planning and biodiversity: assembling the best data for the job. Conservation Biology, 18 (6), 1677–1681. doi:10.1111/j.1523-1739.2004.00434.x
  • Pullinger, M.G. and Johnson, C.J., 2010. Maintaining or restoring connectivity of modified landscapes: evaluating the least-cost path model with multiple sources of ecological information. Landscape Ecology, 25 (10), 1547–1560. doi:10.1007/s10980-010-9526-6
  • Rayfield, B., Fortin, M.J., and Fall, A., 2010. The sensitivity of least-cost habitat graphs to relative cost surface values. Landscape Ecology, 25 (4), 519–532. doi:10.1007/s10980-009-9436-7
  • Rayfield, B., Fortin, M.J., and Fall, A., 2011. Connectivity for conservation: a framework to classify network measures. Ecology, 92 (4), 847–858. doi:10.1890/09-2190.1
  • Ricketts, T.H., 2001. The matrix matters: effective isolation in fragmented landscapes. The American Naturalist, 158 (1), 87–99. doi:10.1086/320863
  • Roy, K., Kar, S., and Das, R.N., 2015. Statistical methods in QSAR/QSPR. In: A primer on QSAR/QSPR modeling. Cham: Springer, 37–59.
  • Ruiz-González, A., et al. 2014. Landscape genetics for the empirical assessment of resistance surfaces: the European pine marten (Martes martes) as a target-species of a regional ecological network. Plos One, 9 (10), e110552. doi:10.1371/journal.pone.0110552
  • Savary, P., et al., 2021. graph4lg: a package for constructing and analysing graphs for landscape genetics in R. Methods in Ecology and Evolution, 12 (3), 539–547 doi:10.1111/2041-210X.13530. : .
  • Sawyer, S.C., Epps, C.W., and Brashares, J.S., 2011. Placing linkages among fragmented habitats: do least-cost models reflect how animals use landscapes? Journal of Applied Ecology, 48 (3), 668–678. doi:10.1111/j.1365-2664.2011.01970.x
  • Schadt, S., et al. 2002. Rule-based assessment of suitable habitat and patch connectivity for the Eurasian lynx. Ecological Applications, 12 (5), 1469–1483. doi:10.1890/1051-0761(2002)012[1469:RBAOSH]2.0.CO;2
  • Shirabe, T., 2016. A method for finding a least-cost wide path in raster space. International Journal of Geographical Information Science, 30 (8), 1469–1485. doi:10.1080/13658816.2015.1124435
  • Shirk, A., et al. 2010. Inferring landscape effects on gene flow: a new model selection framework. Molecular Ecology, 19 (17), 3603–3619. doi:10.1111/j.1365-294X.2010.04745.x
  • Simpkins, C.E., et al., 2017. Effects of uncertain cost-surface specification on landscape connectivity measures. Ecological Informatics, 38, 1–11. doi:10.1016/j.ecoinf.2016.12.005
  • Simpkins, C.E., et al., 2018. Assessing the performance of common landscape connectivity metrics using a virtual ecologist approach. Ecological Modelling, 367, 13–23. doi:10.1016/j.ecolmodel.2017.11.001
  • Spackman, S.C. and Hughes, J.W., 1995. Assessment of minimum stream corridor width for biological conservation: species richness and distribution along mid-order streams in Vermont, USA. Biological Conservation, 71 (3), 325–332. doi:10.1016/0006-3207(94)00055-U
  • Spear, S.F., et al. 2010. Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Molecular Ecology, 19 (17), 3576–3591. doi:10.1111/j.1365-294X.2010.04657.x
  • Tenenhaus, M., 1998. La régression pls: théorie et pratique. Paris: Editions TECHNIP.
  • Therneau, T.M., Atkinson, B., and Ripley, M.B., 2010. The rpart package.
  • Wang, Y.H., et al., 2008. Habitat suitability modelling to correlate gene flow with landscape connectivity. Landscape Ecology, 23 (8), 989–1000.
  • Wold, S., Sjöström, M., and Eriksson, L., 2001. PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58 (2), 109–130. doi:10.1016/S0169-7439(01)00155-1
  • Zeller, K.A., et al. 2016. Using simulations to evaluate Mantel-based methods for assessing landscape resistance to gene flow. Ecology and Evolution, 6 (12), 4115–4128. doi:10.1002/ece3.2154
  • Zeller, K.A., et al. 2018. Are all data types and connectivity models created equal? validating common connectivity approaches with dispersal data. Diversity & Distributions, 24 (7), 868–879. doi:10.1111/ddi.12742
  • Zeller, K.A., McGarigal, K., and Whiteley, A.R., 2012. Estimating landscape resistance to movement: a review. Landscape Ecology, 27 (6), 777–797. doi:10.1007/s10980-012-9737-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.