392
Views
2
CrossRef citations to date
0
Altmetric
Technical Communication

SPSLiDAR: towards a multi-purpose repository for large scale LiDAR datasets

ORCID Icon, , , &
Pages 992-1011 | Received 10 Apr 2021, Accepted 09 Jan 2022, Published online: 03 Mar 2022

References

  • Agarwal, S. and Rajan, K., 2017. Analyzing the performance of NoSQL vs. SQL databases for Spatial and Aggregate queries. In: Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings.
  • Baert, J., Lagae, A., and Dutré, P., 2014. Out-of-core construction of sparse voxel octrees: out-of-core construction of sparse voxel octrees. Computer Graphics Forum, 33 (6), 220–227.
  • Boehler, W., Bordas Vicent, M., and Marbs, A., 2018. Ogc testbed-14: Point cloud data handling engineering report. Mainz: i3mainz, Institute for Spatial Information and Surveying Technology, FH Mainz. Available from: http://www.opengis.net/doc/PER/t14-D013
  • Boehm, J., 2014. File-centric organization of large LiDAR point clouds in a big data context. In: Workshop on processing large geospatial data, Cardiff, UK, 69–76.
  • Boehm, J., Liu, K., and Alis, C., 2016. Sideloading – ingestion of large point clouds into the apache spark big data engine. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B2, 343–348.
  • Boulch, A., 2020. ConvPoint: continuous convolutions for point cloud processing. arXiv 1904.02375 [cs].
  • Bräunl, T., 2020. Lidar sensors. In: Robot Adventures in Python and C. Cham: Springer International Publishing, 47–51.
  • Bunting, P., et al., 2013. Sorted pulse data (SPD) library. Part I: a generic file format for LiDAR data from pulsed laser systems in terrestrial environments. Computers & Geosciences, 56, 197–206.
  • Cao, C., Preda, M., and Zaharia, T., 2019. 3D point cloud compression: a survey. In: The 24th International Conference on 3D Web Technology, July, Los Angeles, CA, USA. ACM, 1–9.
  • Deibe, D., Amor, M., and Doallo, R., 2019. Supporting multi-resolution out-of-core rendering of massive LiDAR point clouds through non-redundant data structures. International Journal of Geographical Information Science, 33 (3), 593–617.
  • Deibe, D., Amor, M., and Doallo, R., 2018. Big data storage technologies: a case study for web-based LiDAR visualization. In: 2018 IEEE International Conference on Big Data (Big Data), December, Seattle, WA, USA. IEEE, 3831–3840.
  • Deng, X., et al., 2019. Geospatial Big Data: new paradigm of remote sensing applications. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12 (10), 3841–3851.
  • Desprat, C., Luga, H., and Jessel, J.P., 2015. Hybrid client-server and P2P network for web-based collaborative 3D design. In: 23rd International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG 2015), 229–238.
  • Discher, S., Richter, R., and Döllner, J., 2019. Concepts and techniques for web-based visualization and processing of massive 3D point clouds with semantics. Graphical Models, 104, 101036.
  • Doboš, J., et al., 2013. XML3DRepo: a REST API for version controlled 3D assets on the web. In: Proceedings of the 18th International Conference on 3D Web Technology-Web3D ’13, San Sebastian, Spain. ACM Press, 47.
  • Doboš, J. and Steed, A., 2012. 3D revision control framework. In: Proceedings of the 17th International Conference on 3D Web Technology-Web3D ’12, Los Angeles, CA. ACM Press, 121.
  • Elseberg, J., Borrmann, D., and Nüchter, A., 2013. One billion points in the cloud – an octree for efficient processing of 3D laser scans. ISPRS Journal of Photogrammetry and Remote Sensing, 76, 76–88.
  • Evans, A., et al., 2014a. 3D graphics on the web: a survey. Computers & Graphics, 41, 43–61.
  • Evans, M.R., et al., 2014b. Spatial Big Data. Case studies on volume, velocity, and variety. In: Big Data: Techniques and technologies in geoinformatics. Boca Raton, FL: CRC Press, 149–176.
  • Fernández, A., 2021. Loadtest 5.1.2. Available from: https://pypi.org/project/loadtest/
  • Gao, Z., et al., 2014. Visualizing aerial LiDAR cities with hierarchical hybrid point-polygon structures. In: Proceedings of Graphics Interface, 2014, GI ’14, 137–144.
  • Gong, J., et al., 2012. An efficient point cloud management method based on a 3D R-Tree. Photogrammetric Engineering & Remote Sensing, 78 (4), 373–381.
  • Goswami, P., et al., 2013. An efficient multi-resolution framework for high quality interactive rendering of massive point clouds using multi-way KD-trees. The Visual Computer, 29 (1), 69–83.
  • Hongchao, M. and Wang, Z., 2011. Distributed data organization and parallel data retrieval methods for huge laser scanner point clouds. Computers & Geosciences, 37 (2), 193–201.
  • Houston, B., et al., 2013. Clara.io: full-featured 3D content creation for the web and cloud era. In: ACM SIGGRAPH 2013 Studio Talks, Anaheim, California. ACM Press, 1.
  • Huang, L., et al., 2020. OctSqueeze: octree-structured entropy model for LiDAR compression. arXiv 2005.07178 [cs, eess].
  • Hug, C., Krzystek, P., and Fuchs, W., 2004. Advanced LiDAR data processing with LasTools. ISPRS Archives, XXXV (B2), 832–837.
  • Instituto Geográfico Nacional, 2021. PNOA-LiDAR.
  • Isenburg, M., 2013. LASzip. Photogrammetric Engineering & Remote Sensing, 79 (2), 209–217.
  • Józsa, O., Börcs, A., and Benedek, C., 2013. Towards 4D virtual city reconstruction from lidar point cloud sequences. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II-3 (W1), 15–20.
  • Kang, L., et al., 2019. Efficient randomized hierarchy construction for interactive visualization of large scale point clouds. In: 2019 IEEE Fourth International Conference on Data Science in Cyberspace (DSC), June, Hangzhou, China. IEEE, 593–597.
  • Kämpe, V., Sintorn, E., and Assarsson, U., 2013. High resolution sparse voxel DAGs. ACM Transactions on Graphics, 32 (4), 1–13.
  • Krämer, M. and Senner, I., 2015. A modular software architecture for processing of big geospatial data in the cloud. Computers & Graphics, 49, 69–81.
  • Kulawiak, M. and Kulawiak, M., 2017. Application of web-GIS for dissemination and 3D visualization of large-volume LiDAR data. In: I. Ivan, A. Singleton, J. Horák, and T. Inspektor, eds. The rise of big spatial data. Lecture notes in geoinformation and cartography. Cham: Springer International Publishing, 1–12.
  • Ladra, S., et al., 2019. Space- and time-efficient storage of LiDAR point clouds. arXiv, 11811, 513–527.
  • Lee, J.G. and Kang, M., 2015. Geospatial Big Data: challenges and opportunities. Big Data Research, 2 (2), 74–81.
  • Lu, B., Wang, Q., and Li, A., 2019. Massive point cloud space management method based on octree-like encoding. Arabian Journal for Science and Engineering, 44 (11), 9397–9411.
  • Mallet, C. and Bretar, F., 2009. Full-waveform topographic lidar: state-of-the-art. ISPRS Journal of Photogrammetry and Remote Sensing, 64 (1), 1–16.
  • Martinez-Rubi, O., et al., 2015. Taming the beast: free and open-source massive point cloud web visualization. Capturing Reality Forum, 2015.
  • MongoDB, Inc. 2021. MongoDB. Available from: https://www.mongodb.com/
  • National Oceanic and Atmospheric Administration. 2021. NOOA Digital Coast. Available from: https://coast.noaa.gov/digitalcoast
  • Pajić, V., Govedarica, M., and Amović, M., 2018. Model of point cloud data management system in Big Data paradigm. ISPRS International Journal of Geo-Information, 7 (7), 265.
  • Pandey, R., 2020. Performance benchmarking and comparison of cloud-based databases MongoDB (NoSQL) vs MySQL (Relational) using YCSB. Available from: https://www.researchgate.net/publication/344047197
  • Pääkkönen, P. and Pakkala, D., 2015. Reference architecture and classification of technologies, products and services for Big Data systems. Big Data Research, 2 (4), 166–186.
  • Poux, F. and Billen, R., 2019a. A smart point cloud infrastructure for intelligent environments. In: Laser scanning: an emerging technology in structural engineering. Leiden, The Netherlands: CRC Press, 127–149.
  • Poux, F. and Billen, R., 2019b. Voxel-based 3D point cloud semantic segmentation: unsupervised geometric and relationship featuring vs deep learning methods. ISPRS International Journal of Geo-Information, 8 (5), 213.
  • Poux, F., 2019. The smart point cloud: structuring 3D intelligent point data. Thesis (PhD). Université de Liège, Liège, Belgique.
  • Reitz, K., 2021. Requests 2.25.1. Available from: https://pypi.org/project/requests/
  • Richter, R., Discher, S., and Döllner, J., 2015. Out-of-Core Visualization of Classified 3D Point Clouds. In: M. Breunig, M. Al-Doori, E. Butwilowski, P.V. Kuper, J. Benner, and K.H. Haefele, eds. 3D geoinformation science. Lecture notes in geoinformation and cartography. Cham: Springer International Publishing, 227–242.
  • Scheiblauer, C. and Wimmer, M., 2011. Out-of-core selection and editing of huge point clouds. Computers & Graphics, 35 (2), 342–351.
  • Schön, B., et al., 2013. Octree-based indexing for 3D pointclouds within an Oracle Spatial DBMS. Computers & Geosciences, 51, 430–438.
  • Schütz, M., 2016. Potree: rendering large point clouds in web browsers. Thesis (PhD). Vienna University of Technology.
  • Schütz, M., Ohrhallinger, S., and Wimmer, M., 2020. Fast out-of-core octree generation for massive point clouds. Computer Graphics Forum, 39 (7), 155–167.
  • Schutz, M. and Wimmer, M., 2019. Rendering point clouds with compute shaders. In: SIGGRAPH Asia 2019 Posters, November, Brisbane, QLD, Australia. ACM, 1–2.
  • Ströter, D., et al., 2020. OLBVH: octree linear bounding volume hierarchy for volumetric meshes. The Visual Computer, 36 (10–12), 2327–2340.
  • Sugimoto, K., et al., 2017. Trends in efficient representation of 3D point clouds. In: 2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), December, Kuala Lumpur. IEEE, 364–369.
  • The Spring Team and VMware, 2021. Spring. Available from: https://spring.io/
  • Ullrich, A. and Pfennigbauer, M., 2019. Advances in lidar point cloud processing. In: M.D. Turner and G.W. Kamerman, eds. Laser radar technology and applications XXIV, May, Baltimore, United States. SPIE, 19.
  • US Geological Survey, 2021. USGS 3D Elevation Program (USGS 3DEP). Available from: https://www.usgs.gov/core-science-systems/ngp/3dep
  • Wang, Y., Lv, H., and Ma, Y., 2020. Geological tetrahedral model-oriented hybrid spatial indexing structure based on octree and 3D R*-tree. Arabian Journal of Geosciences, 13 (15), 728.
  • Wang, Y., et al., 2019. Dynamic graph CNN for learning on point clouds. ACM Transactions on Graphics, 38 (5), 1–12.
  • Xie, Y., Tian, J., and Zhu, X.X., 2020. Linking points with labels in 3D: a review of point cloud semantic segmentation. IEEE Geoscience and Remote Sensing Magazine, 8 (4), 38–59.
  • Yang, J. and Huang, X., 2014. A hybrid spatial index for massive point cloud data management and visualization: massive point cloud management and visualization. Transactions in GIS, 18, 97–108.
  • Zhao, Y., et al., 2019. 3D point capsule networks. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June, Long Beach, CA, USA. IEEE, 1009–1018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.