1,320
Views
14
CrossRef citations to date
0
Altmetric
Research Articles

GANmapper: geographical data translation

ORCID Icon & ORCID Icon
Pages 1394-1422 | Received 04 Aug 2021, Accepted 08 Feb 2022, Published online: 08 Mar 2022

References

  • Abady, L., et al., 2020. GAN generation of synthetic multispectral satellite images. In: L. Bruzzone, F. Bovolo, E. Santi, eds., Image and signal processing for remote sensing XXVI, International Society for Optics and Photonics. Bellingham: SPIE. pp. 122–133. URL: https://doi.org/10.1117/12.2575765,
  • Anderson, J., Sarkar, D., and Palen, L., 2019. Corporate editors in the evolving landscape of OpenStreetMap. ISPRS International Journal of Geo-Information, 8 (5), 232.
  • Andrade, H.J.A., and Fernandes, B.J.T., 2022. Synthesis of satellite-like urban images from historical maps using conditional gan. IEEE Geoscience and Remote Sensing Letters, 19, 1–4.
  • Baier, G., et al., 2022. Synthesizing optical and SAR imagery from land cover maps and auxiliary raster data. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–12.
  • Barbour, E., et al., 2019. Planning for sustainable cities by estimating building occupancy with mobile phones. Nature Communications, 10 (1), 3736.
  • Barrington-Leigh, C., and Millard-Ball, A., 2017. The world’s open-source street map is more than 80% complete. PLoS One, 12 (8), e0180698–20.
  • Beaulieu-Jones, B.K., et al., 2019. Privacy-preserving generative deep neural networks support clinical data sharing. Circ Cardiovasc Qual Outcomes, 12 (7), e005122.
  • Biljecki, F., 2020. Exploration of open data in Southeast Asia to generate 3D building models. ISPRS Annals of Photogrammetry. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, VI-4/W1-2020, 37–44.
  • Biljecki, F., et al., 2021. Open government geospatial data on buildings for planning sustainable and resilient cities. arXiv:2107.04023.
  • Biljecki, F., and Ito, K., 2021. Street view imagery in urban analytics and GIS: a review. Landscape and Urban Planning, 215, 104217.
  • Boeing, G., 2021. Street network models and indicators for every Urban Area in the World. Geographical Analysis, 2021, 12281.
  • Botta, F., and Gutiérrez-Roig, M., 2021. Modelling urban vibrancy with mobile phone and OpenStreetMap data. PLoS One, 16 (6), e0252015.
  • Bowles, C., et al., 2018. Gansfer learning: combining labelled and unlabelled data for gan based data augmentation. arXiv preprint arXiv:1811.10669.
  • Bright, J., et al., 2018. OpenStreetMap data for alcohol research: reliability assessment and quality indicators. Health Place, 50, 130–136.
  • Brock, A., Donahue, J., and Simonyan, K., 2018. Large scale gan training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096.
  • Brovelli, M.A., et al., 2017. Towards an automated comparison of OpenStreetMap with authoritative road datasets. Transactions in GIS, 21 (2), 191–206.
  • Bshouty, E., Shafir, A., and Dalyot, S., 2020. Towards the generation of 3D OpenStreetMap building models from single contributed photographs. Computers, Environment and Urban Systems, 79, 101421.
  • Calafiore, A., et al., 2021. A geographic data science framework for the functional and contextual analysis of human dynamics within global cities. Computers, Environment and Urban Systems, 85, 101539.
  • Chen, J., Stouffs, R., and Biljecki, F., 2021a. Hierarchical (multi-label) architectural image recognition and classification. In: Proceedings of the 26th international conference of the association for computer-aided architectural design research in Asia (CAADRIA) 2021, pp. 161–170.
  • Chen, T.H.K., et al., 2020. Mapping horizontal and vertical urban densification in Denmark with Landsat time-series from 1985 to 2018: a semantic segmentation solution. Remote Sensing of Environment, 251, 112096.
  • Chen, W., Wu, A.N., and Biljecki, F., 2021b. Classification of urban morphology with deep learning: application on urban vitality. Computers, Environment and Urban Systems, 90, 101706.
  • Chen, X., et al., 2018. PixelSNAIL: an improved autoregressive generative model. In: J. Dy, A. Krause, eds. Proceedings of the 35th international conference on machine learning. PMLR. pp. 864–872.
  • Courtial, A., Touya, G., and Zhang, X., 2021. Generative adversarial networks to generalise urban areas in topographic maps. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B4-2021, 2021, 15–22.
  • Döllner, J., 2020. Geospatial artificial intelligence: potentials of machine learning for 3D point clouds and geospatial digital twins. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 88 (1), 10–15.
  • Engel, J., et al., 2019. Gansynth: adversarial neural audio synthesis. arXiv preprint arXiv:1902.08710.
  • Esch, T., et al., 2017. Breaking new ground in mapping human settlements from space – The Global Urban Footprint. ISPRS Journal of Photogrammetry and Remote Sensing, 134, 30–42.
  • Fan, H., Kong, G., and Zhang, C., 2021. An Interactive platform for low-cost 3D building modeling from VGI data using convolutional neural network. Big Earth Data, 5 (1), 49–65.
  • Fan, H., et al., 2014. Quality assessment for building footprints data on OpenStreetMap. International Journal of Geographical Information Science, 28 (4), 700–719.
  • Fleischmann, M., Feliciotti, A., and Kerr, W., 2021. Evolution of Urban Patterns: urban morphology as an open reproducible data science. Geographical Analysis, 2021, 302.
  • Fleischmann, M., et al., 2020. Morphological tessellation as a way of partitioning space: improving consistency in urban morphology at the plot scale. Computers, Environment and Urban Systems, 80, 101441.
  • Frid-Adar, M., et al., 2018. Synthetic data augmentation using gan for improved liver lesion classification. In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018). IEEE. pp. 289–293.
  • Ganguli, S., Garzon, P., and Glaser, N., 2019. Geogan: a conditional gan with reconstruction and style loss to generate standard layer of maps from satellite images. arXiv preprint arXiv:1902.05611.
  • García, R., et al., 2012. Web map tile services for spatial data infrastructures: management and optimization. In: C. Bateira, ed., Cartography, chapter 2. Rijeka: IntechOpen. URL: https://doi.org/10.5772/46129,
  • Geis, C., et al., 2019. Large-area characterization of urban morphology—mapping of built-up height and density using TanDEM-X and sentinel-2 data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12 (8), 2912–2927.
  • Goodfellow, I., Bengio, Y., and Courville, A., 2016. Deep learning. Cambridge: The MIT Press.
  • Goodfellow, I.J., et al., 2014. Generative adversarial networks. arXiv preprint arXiv:1406.2661.
  • Han, Z.Y., et al., 2018. Unsupervised generative modeling using matrix product states. Physical Review X, 8 (3), 031012.
  • Harig, O., et al., 2021. Automatic delineation of urban growth boundaries based on topographic data using germany as a case study. ISPRS International Journal of Geo-Information, 10 (5), 353.
  • He, K., et al., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 770–778.
  • Herfort, B., et al., 2021. The evolution of humanitarian mapping within the OpenStreetMap community. Scientific Reports, 11 (1), 3037.
  • Heusel, M., et al., 2017. Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural information processing systems 30.
  • Hinton, G.E., and Salakhutdinov, R.R., 2006. Reducing the dimensionality of data with neural networks. Science, 313 (5786), 504–507.
  • Hochreiter, S., and Schmidhuber, J., 1997. Long short-term memory. Neural Comput, 9 (8), 1735–1780.
  • Isola, P., et al., 2017. Image-to-image translation with conditional adversarial networks. Salt Lake City: CVPR.
  • Jiang, K., et al., 2019. Edge-enhanced gan for remote sensing image superresolution. IEEE Transactions on Geoscience and Remote Sensing, 57 (8), 5799–5812.
  • Kang, Y., Gao, S., and Roth, R.E., 2019. Transferring multiscale map styles using generative adversarial networks. International Journal of Cartography, 5 (2–3), 115–127. arXiv:1905.02200.
  • Karras, T., Laine, S., and Aila, T., 2019. A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 4401–4410.
  • Karras, T., et al., 2020. Analyzing and improving the image quality of stylegan. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 8110–8119.
  • Ledoux, H., et al., 2021. 3dfier: automatic reconstruction of 3D city models. Journal of Open Source Software, 6 (57), 2866.
  • Li, J., et al., 2020a. MapGAN: an intelligent generation model for network tile maps. Sensors, 20 (11), 3119.
  • Li, J., et al., 2020b. Thin cloud removal in optical remote sensing images based on generative adversarial networks and physical model of cloud distortion. ISPRS Journal of Photogrammetry and Remote Sensing, 166, 373–389.
  • Li, M., et al., 2020c. Continental-scale mapping and analysis of 3D building structure. Remote Sensing of Environment, 245, 111859.
  • Li, Y., et al., 2017. Generative face completion. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 3911–3919.
  • Lloyd, C.T., et al., 2019. Global spatio-temporally harmonised datasets for producing high-resolution gridded population distribution datasets. Big Earth Data, 3 (2), 108–139. 1625151.
  • Ludwig, C., et al., 2021. Mapping public urban green spaces based on OpenStreetMap and sentinel-2 imagery using belief functions. ISPRS International Journal of Geo-Information, 10 (4), 251.
  • Ma, J., et al., 2020. Pan-gan: an unsupervised pan-sharpening method for remote sensing image fusion. Information Fusion, 62, 110–120.
  • Maaløe, L., et al., 2016. Auxiliary deep generative models. In: International conference on machine learning. PMLR. pp. 1445–1453.
  • Majic, I., et al., 2021. There is no way! Ternary qualitative spatial reasoning for error detection in map data. Transactions in GIS, 25 (4), 2048–2073.
  • Milojevic-Dupont, N., et al., 2020. Learning from urban form to predict building heights. PLoS One, 15 (12), e0242010.
  • Minaei, M., 2020. Evolution, density and completeness of OpenStreetMap road networks in developing countries: the case of Iran. Applied Geography, 119, 102246.
  • Mirza, M., and Osindero, S., 2014. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784.
  • Mocnik, F.B., 2021. Benford’s law and geographical information – the example of OpenStreetMap. International Journal of Geographical Information Science, 35 (9), 1727–1746. 1829627.
  • Ng, V., and Hofmann, D., 2018. Scalable feature extraction with aerial and satellite imagery. In: Conference site proceedings. pp. 145–151.
  • Palliwal, A., et al., 2021. 3D city models for urban farming site identification in buildings. Computers, Environment and Urban Systems, 86, 101584.
  • Park, T., et al., 2019a. Gaugan: semantic image synthesis with spatially adaptive normalization. In: ACM SIGGRAPH 2019 Real-Time Live! pp. 1–1.
  • Park, T., et al., 2019b. Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 2337–2346.
  • Park, Y., and Guldmann, J.M., 2019. Creating 3D city models with building footprints and LIDAR point cloud classification: a machine learning approach. Computers, Environment and Urban Systems, 75, 76–89.
  • Paszke, A., et al., 2019. Pytorch: an imperative style, high-performance deep learning library. In: H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, R. Garnett, eds., Advances in Neural Information Processing Systems 32. Red Hook: Curran Associates, Inc., pp. 8024–8035. URL: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.
  • Pathak, D., et al., 2016. Context encoders: feature learning by inpainting. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2536–2544.
  • Patias, N., et al., 2021. Sustainable urban development indicators in Great Britain from 2001 to 2016. Landscape and Urban Planning, 214, 104148.
  • Quintana, M., et al., 2020. Balancing thermal comfort datasets. In: Proceedings of the 7th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, 120–129. arXiv:2009.13154.
  • Rachele, J.N., et al., 2021. Using machine learning to examine associations between the built environment and physical function: a feasibility study. Health Place, 70, 102601.
  • Radford, A., Metz, L., and Chintala, S., 2015. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.
  • Rao, J., et al., 2020. LSTM-TrajGAN: a deep learning approach to trajectory privacy protection. In: K. Janowicz, J.A. Verstegen, eds., 11th International Conference on Geographic Information Science (GIScience 2021) – Part I. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany. pp. 12:1–12:17.
  • Reed, S., et al., 2016a. Generative adversarial text to image synthesis. In: M.F. Balcan, K.Q. Weinberger, eds., Proceedings of The 33rd International Conference on Machine Learning, PMLR, New York, New York, USA. pp. 1060–1069. URL: https://proceedings.mlr.press/v48/reed16.html.
  • Reed, S., et al., 2016b. Generative adversarial text to image synthesis. In: International Conference on Machine Learning, PMLR. pp. 1060–1069.
  • Robinson, C., et al., 2021. Global land-cover mapping with weak supervision: outcome of the 2020 IEEE GRSS data fusion contest. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 3185–3199.
  • Ronneberger, O., Fischer, P., and Brox, T., 2015. U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention, Springer. pp. 234–241.
  • Sandfort, V., et al., 2019. Data augmentation using generative adversarial networks (cyclegan) to improve generalizability in ct segmentation tasks. Scientific Reports, 9 (1), 1–9.
  • Schug, F., et al., 2021. Gridded population mapping for Germany based on building density, height and type from Earth Observation data using census disaggregation and bottom-up estimates. PLoS One, 16 (3), e0249044.
  • Sela, M., et al., 2017. Gazegan-unpaired adversarial image generation for gaze estimation. arXiv preprint arXiv:1711.09767.
  • Shang, S., et al., 2021. Estimating building-scale population using multi-source spatial data. Cities, 111, 103002.
  • Shen, Y., Ai, T., and He, Y., 2018. A new approach to line simplification based on image processing: a case study of water area boundaries. ISPRS International Journal of Geo-Information, 7 (2), 41.
  • Smith, N., 1992. History and philosophy of geography: real wars, theory wars. Progress in Human Geography, 16 (2), 257–271.
  • So, W., and Duarte, F., 2020. Cartographers of North Korea: Who are they and what are the technical, political, and social issues involved in mapping North Korea. Geoforum, 110, 147–156.
  • Stefanakis, E., 2017. Web mercator and raster tile maps: two cornerstones of online map service providers. Geomatica, 71 (2), 100–109.
  • Sun, Y., et al., 2020. Automatic registration of a single SAR image and GIS building footprints in a large-scale urban area. ISPRS J Photogramm Remote Sens, 170, 1–14.
  • Szegedy, C., et al., 2016. Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2818–2826.
  • Tatem, A.J., 2017. WorldPop, open data for spatial demography. Scientific Data, 4, 170004.
  • Waldner, F., and Diakogiannis, F.I., 2020. Deep learning on edge: extracting field boundaries from satellite images with a convolutional neural network. Remote Sensing of Environment, 245, 111741.
  • Wang, C.K., et al., 2020. Bayesian calibration at the urban scale: a case study on a large residential heating demand application in Amsterdam. Journal of Building Performance Simulation, 13 (3), 347–361.
  • Wang, M., Madden, M., and Liu, X., 2017. Exploring the relationship between urban forms and CO2 emissions in 104 Chinese Cities. Journal of Urban Planning and Development, 143 (4), 04017014.
  • Wu, A.N., and Biljecki, F., 2021. Roofpedia: Automatic mapping of green and solar roofs for an open roofscape registry and evaluation of urban sustainability. Landscape and Urban Planning, 214, 104167.
  • Wu, C., et al., 2020. Spatiotemporal scenario generation of traffic flow based on lstm-gan. IEEE Access., 8, 186191–186198.
  • Xie, Y., et al., 2020. A locally-constrained YOLO framework for detecting small and densely-distributed building footprints. International Journal of Geographical Information Science, 34 (4), 725–777.
  • Xu, D., et al., 2020. Ge-gan: a novel deep learning framework for road traffic state estimation. Transportation Research Part C: Emerging Technologies, 117, 102635.
  • Xu, T., et al., 2018. Attngan: fine-grained text to image generation with attentional generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
  • Xu, Y., et al., 2017. Urban morphology detection and computation for urban climate research. Landscape and Urban Planning, 167, 212–224.
  • Yan, K., Chong, A., and Mo, Y., 2020a. Generative adversarial network for fault detection diagnosis of chillers. Building and Environment, 172, 106698.
  • Yan, Y., et al., 2020b. Volunteered geographic information research in the first decade: a narrative review of selected journal articles in GIScience. International Journal of Geographical Information Science, 34 (9), 1727–1765.
  • Ye, X., Du, J., and Ye, Y., 2021. MasterplanGAN: facilitating the smart rendering of urban master plans via generative adversarial networks. Environment and Planning B: Urban Analytics and City Science, 2021, 239980832110235.
  • Yeh, R.A., et al., 2017. Semantic image inpainting with deep generative models. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5485–5493.
  • Yoon, J., Jarrett, D., and van der Schaar, M., 2019. Time-series generative adversarial networks. In: H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E., Fox, R. Garnett, (Eds.), Advances in neural information processing systems. Red Hook: Curran Associates, Inc. URL: https://proceedings.neurips.cc/paper/2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf.
  • Yu, Y., Srivastava, A., and Canales, S., 2021. Conditional lstm-gan for melody generation from lyrics. ACM Transactions on Multimedia Computing, Communications, and Applications, 17 (1), 1–20.
  • Yuan, C., et al., 2019. Multilayer urban canopy modelling and mapping for traffic pollutant dispersion at high density urban areas. Science of the Total Environment, 647, 255–267.
  • Zakharov, E., et al., 2019. Few-shot adversarial learning of realistic neural talking head models. In: Proceedings of the IEEE/CVF international conference on computer vision, pp. 9459–9468.
  • Zhang, H., et al., 2017. Stackgan: text to photo-realistic image synthesis with stacked generative adversarial networks. In: Proceedings of the IEEE international conference on computer vision, pp. 5907–5915.
  • Zhang, J., Fukuda, T., and Yabuki, N., 2021a. Automatic object removal with obstructed façades completion using semantic segmentation and generative adversarial inpainting. IEEE Access, 9, 117486–117495.
  • Zhang, L., et al., 2021b. Satp-gan: self-attention based generative adversarial network for traffic flow prediction. Transportmetrica B: Transport Dynamics, 9 (1), 552–568.
  • Zhang, Y., et al., 2015. Density and diversity of OpenStreetMap road networks in china. Journal of Urban Management, 4 (2), 135–146.
  • Zhang, Y., et al., 2020. An enhanced gan model for automatic satellite-to-map image conversion. IEEE Access, 8, 176704–176716.
  • Zhang, Z., et al., 2021c. Remote sensing image jitter restoration based on deep generative adversarial network. In: 2021 IEEE international geoscience and remote sensing symposium IGARSS, pp. 2683–2686.
  • Zhao, B., et al., 2021. Deep fake geography? when geospatial data encounter artificial intelligence. Cartography and Geographic Information Science, 48 (4), 338–352.
  • Zhu, D., et al., 2019a. Spatial interpolation using conditional generative adversarial neural networks. International Journal of Geographical Information Science, 34 (4), 724–735.
  • Zhu, F., et al., 2019b. Electrocardiogram generation with a bidirectional lstm-cnn generative adversarial network. Scientific Reports, 9 (1), 1–11.
  • Zhu, J.Y., et al., 2017. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE international conference on computer vision. pp. 2223–2232.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.