255
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Uncertainty interval estimates for computing slope and aspect from a gridded digital elevation model

ORCID Icon
Pages 1601-1628 | Received 21 Mar 2021, Accepted 04 Apr 2022, Published online: 07 Jun 2022

References

  • Caha, J., and Dvorský, J., 2017. First derivatives of fuzzy surfaces. Annales Mathematicae et Informaticae, 47, 19–40.
  • Carter, J.R., 1992. The effect of data precision on the calculation of slope and aspect using gridded DEMs. Cartographica: The International Journal for Geographic Information and Geovisualization, 29 (1), 22–34.
  • Chu, T.H., and Tsai, T.H., 1995. Comparison of accuracy and algorithms of slope and aspect measures from DEM. In: Proceedings of GIS AM/FM ASIA’95. 21–24 August, Bangkok, I-1-1–I-1-11.
  • Crippen, R., et al., 2016. NASADEM Global Elevation Model: methods and progress. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B4, 125–128.
  • Fleming, M.D., and Hoffer, R.M., 1979. Machine processing of Landsat MSS data and DMA topographic data for forest cover type mapping. LARS technical report 062879, Laboratory for Applications of Remote Sensing, Purdue University, West Lafayette, Indiana, U.S.A.
  • Florinsky, I.V., 1998. Accuracy of local topographic variables derived from digital elevation models. International Journal of Geographical Information Science, 12 (1), 47–62.
  • Florinsky, I.V., 2009. Computation of the third-order partial derivatives from a digital elevation model. International Journal of Geographical Information Science, 23 (2), 213–231.
  • Florinsky, I.V., 2016. Digital Terrain Analysis in Soil Science and Geology. Cambridge, MA: Academic Press.
  • Gallant, J.C., and Wilson, J.P., 1996. TAPES-G: a grid-based terrain analysis program for the environmental sciences. Computers & Geosciences, 22 (7), 713–722.
  • Gonçalves, G., and Santos, J., 2005. Propagation of DEM uncertainty: an interval arithmetic approach. In: XXII International Cartographic Conference, Spain.
  • Guth, P.L., 2021. Personal communication.
  • Guth, P.L., et al., 2021. Digital elevation models: terminology and definitions. Remote Sensing, 13 (18), 3581.
  • Horn, B.K.P., 1981. Hill shading and the reflectance map. Proceedings of the IEEE, 69 (1), 14–47.
  • Jones, K.H., 1998. A comparison of algorithms used to compute hill slope as a property of the DEM. Computers & Geosciences, 24 (4), 315–323.
  • Kovesi, P., 2015. Good colour maps: how to design them. arXiv preprint arXiv:1509.03700.
  • Liu, X., and Bian, L., 2008. Accuracy assessment of DEM slope algorithms related to spatial autocorrelation of DEM errors. In: Q. Zhou, B. Lees, and G. Tang, eds. Advances in Digital Terrain Analysis. Lecture Notes in Geoinformation and Cartography. Berlin, Heidelberg: Springer, 307–322.
  • Minár, J., et al., 2013. Third-order geomorphometric variables (derivatives): definition, computation and utilization of changes of curvatures. International Journal of Geographical Information Science, 27 (7), 1381–1402.
  • Moore, R., Kearfott, R.B., and Cloud, M.J., 2009. Introduction to interval analysis. Philadelphia, PA: Society for Industrial and Applied Mathematics.
  • Moore, I.D., Gessler, P.E., Nielsen, G.A. and Peterson, G.A., 1993. Soil attribute prediction using terrain analysis. Soil Science Society of America Journal, 57, 443–452.
  • Morrison, J.L., 1971. Method-produced error in isarithmic mapping. American Congress on Surveying and Mapping. Technical Monograph No. CA-5, 75
  • Polidori, L., and El Hage, M., 2020. Digital elevation model quality assessment methods: a critical review. Remote Sensing, 12 (21), 3522–3536.
  • Reuter, H.I., et al., 2009. Preparation of DEMs for geomorphometric analysis. In: Tomislav Hengl and Hannes I. Reuter, eds. Developments in Soil Science. Vol. 33. Amsterdam: Elsevier, 87–120.
  • Sharpnack, D.A., and Akin, G., 1969. An algorithm for computing slope and aspect from elevations. Photogrammetric Survey, 35, 247–248.
  • Shary, P. A., 1995. Land surface in gravity points classification by complete system of curvatures. Mathematical Geology, 27, 373–390.
  • Shary, P.A., Sharaya, L.S., and Mitusov, A.V., 2002. Fundamental quantitative methods of land surface analysis. Geoderma, 107 (1-2), 1–32.
  • Shary, P.A., 2008. Models of topography. In: Q. Zhou, B. Lees, and G. Tang, eds. Advances in Digital Terrain Analysis. Lecture Notes in Geoinformation and Cartography. Berlin, Heidelberg: Springer.
  • Skidmore, A.K., 1989. A comparison of techniques for calculating gradient and aspect from a gridded digital elevation model. International Journal of Geographical Information Systems, 3 (4), 323–334.
  • Tang, J., and Pilesjö, P., 2011. Estimating slope from raster data: a test of eight different algorithms in flat, undulating and steep terrain. In: C.A. Brebbia, ed. River Basin Management VI, Riverside, California, USA. UK: Wessex Institute of Technology, 143–154.
  • Unwin, D., 1981. Introductory Spatial Analysis. London and New York: Methuen.
  • Vaze, J., Teng, J., and Spencer, G., 2010. Impact of DEM accuracy and resolution on topographic indices. Environmental Modelling & Software, 25 (10), 1086–1098.
  • Warren, S.D., et al., 2004. An evaluation of methods to determine slope using digital elevation data. CATENA, 58 (3), 215–233.
  • Young, M., and Evans, I.S., 1978. Statistical Characterization of Altitude Matrices. Report No. 5, Grant DA-ERO-591-73-G0040. England: Dept. of Geography, University of Durham, 26.
  • Zevenbergen, L.W., and Thorne, C.R., 1987. Quantitative analysis of land surface topography. Earth Surface Processes and Landforms, 12 (1), 47–56.
  • Zhou, Q., and Liu, X., 2004. Error analysis on grid-based slope and aspect algorithms. Photogrammetric Engineering & Remote Sensing, 70 (8), 957–962.
  • Zhou, Q., and Liu, X., 2008. Assessing uncertainties in derived slope and aspect from a Grid DEM. In: Q. Zhou, B. Lees, and G. Tang, eds. Advances in Digital Terrain Analysis SE – 15, Lecture Notes in Geoinformation and Cartography. Berlin, Heidelberg, Germany: Springer, 279–306.
  • Zlatev, Z., et al., 2017. Richardson Extrapolation: Practical Aspects and Applications, De Gruyter Series in Applied and Numerical Mathematics. Berlin; Boston: De Gruyter.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.