511
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Transform paper-based cadastral data into digital systems using GIS and end-to-end deep learning techniques

ORCID Icon, , , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1099-1127 | Received 29 Sep 2022, Accepted 05 Feb 2023, Published online: 22 Mar 2023

References

  • Albut, S., 2020. Estimation of slope length (L) and slope steepness factor (S) of RUSLE equation by QGIS. International Journal of Research in Engineering and Science, 8, 43–48.
  • Ali, A. and Imran, M., 2021. National spatial data infrastructure vs cadastre system for economic development: evidence from Pakistan. Land, 10 (2), 188.
  • Ali, Z. and Shakir, M., 2012. Implementing GIS-based cadastral and land information system in Pakistan. Journal of Settlements Spatial Planning, 3 (1), 43–49.
  • Ares Oliveira, S., et al. 2019. A deep learning approach to cadastral computing. In: N.L. Davis, ed. Digital humanities conference, 9–12 July 2019 Utretch, Netherlands. Utretch, Netherlands: Digital Humanities Organizations (DHO), 962–971.
  • Bajjali, W., 2018. ArcScan. ArcGIS for environmental and water issues. New York: Springer.
  • Balawejder, M., Matkowska, K., and Colak, H.E., 2018. The impact of surveying works on the development of smart city. Perugia, Italy: GIS Forum.
  • Bennett, R.M., Koeva, M., and Asiama, K., 2021. Review of remote sensing for land administration: origins, debates, and selected cases. Remote Sensing, 13 (21), 4198.
  • Bertrand, M., 2019. “A cadastre for Mali?” The production of land titles and the challenge of property data on the periphery of Bamako. Land Use Policy, 81, 371–381.
  • Bolstad, P.V., Gessler, P., and Lillesand, T.M., 1990. Positional uncertainty in manually digitized map data. International Journal of Geographical Information Systems, 4 (4), 399–412.
  • Boodala, J., Dikshit, O., and Balasubramanian, N., 2020. Towards the derivation of multiple representation database. In: V. Peter, ed. 2020 IEEE international conference on electronics, computing and communication technologies (CONECCT), 2–4 July 2020 Bangalore, India. New York: IEEE, 1–6.
  • Cazzato, D., et al. 2020. A survey of computer vision methods for 2D object detection from unmanned aerial vehicles. Journal of Imaging, 6 (8), 78.
  • Chekole, S.D., de Vries, W.T., and Shibeshi, G.B., 2020. An evaluation framework for urban cadastral system policy in Ethiopia. Land, 9 (2), 60.
  • Chen, F., et al. 2018. Assessing four neural networks on handwritten digit recognition dataset (MNIST). arXiv preprint arXiv:1811.08278 [online]. Available from: https://doi.org/10.48550/arXiv.1811.08278 [Accessed 18 Nov 2022].
  • Da Costa, J.P., et al. 2007. Delineation of vine parcels by segmentation of high resolution remote sensed images. Precision Agriculture, 8 (1-2), 95–110.
  • Dawidowicz, A. and Źróbek, R., 2018. A methodological evaluation of the Polish cadastral system based on the global cadastral model. Land Use Policy, 73, 59–72.
  • Dwivedi, P., 2019. Understanding and coding a ResNet in Keras. Available from: https://towardsdatascience.com/understanding-and-coding-a-resnet-in-keras-446d7ff84d33 [Accessed 01 Oct 2022].
  • Ezeomedo, I., 2019. Role of land surveyors and geospatial engineers in the built environment. Coou African Journal of Environmental Research, 2 (1), 102–117.
  • Fan, Y.T., et al. 2010. A time-based integration method of spatio-temporal data at spatial database level. Mathematical and Computer Modelling, 51 (11-12), 1286–1292.
  • Fetai, B., Grigillo, D., and Lisec, A., 2022. Revising cadastral data on land boundaries using deep learning in image-based mapping. ISPRS International Journal of Geo-Information, 11 (5), 298.
  • Fischler, M.A. and Bolles, R.C., 1981. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24 (6), 381–395.
  • Gao, M., et al. 2021. A transfer residual neural network based on ResNet-34 for detection of wood knot defects. Forests, 12 (2), 212.
  • García-Pedrero, A., Gonzalo-Martín, C., and Lillo-Saavedra, M., 2017. A machine learning approach for agricultural parcel delineation through agglomerative segmentation. International Journal of Remote Sensing, 38 (7), 1809–1819.
  • Ghilani, C.D. and Wolf, P.R., 2012. Elementary surveying an introduction to geomatics edition: 13th, Upper Saddle River, NJ: Pearson Education, Inc.
  • Gibbings, P.D., 2013. Surveyors Board of Queensland RTK GNSS for cadastral surveys: guideline. In: Davidson, Kellie, ed. Proceedings of the joint central and northern groups conference (SSSIQ 2013), 3–5 May 2013 Rockhampton, Australia. Brisbane, Australia: Surveyors Board of Queensland, 68–77.
  • Grant, D. and Pearse, M., 1995. Proposal for a dynamic national geodetic datum for New Zealand. Boulder, CO: IUGG General Assembly.
  • He, K., et al. 2016. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 770–778. https://doi.org/10.1109/CVPR.2016.90.
  • Huck, J., et al. 2017. Paper2GIS: A self-digitising, paper-based PPGIS. In: Dominic Wintie, ed. Geocomp 2017: proceedings of the 14th international conference on geocomputation, 4–7 September 2017 Leeds, UK. Leeds, UK: Leeds University, 97–104.
  • Ignjatić, J., Nikolić, B., and Rikalović, A., 2018. Deep learning for historical cadastral maps digitization: overview, challenges and potential [online]. Available from: http://wscg.zcu.cz/WSCG2018/2018-papers/!!_CSRN-2803-6.pdf [Accessed 08 Dec 2022].
  • Janata, T. and Cajthaml, J.J.A.S., 2020. Georeferencing of multi-sheet maps based on least squares with constraints—first military mapping survey maps in the area of Czechia. Applied Sciences, 11 (1), 299.
  • Karaborka, H., et al. 2008. A neural network algorithm for vectorization of 2D maps. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37 (B2), 473–480.
  • Karimi, H.A. and Kasemsuppakorn, P., 2013. Pedestrian network map generation approaches and recommendation. International Journal of Geographical Information Science, 27 (5), 947–962.
  • Kingma, D.P. and Ba, J., 2014. Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference for Learning Representations, San Diego. arXiv preprint arXiv:1412.6980. https://doi.org/10.48550/arXiv.1412.6980.
  • Luft, J. and Schiewe, J., 2021. Automatic content‐based georeferencing of historical topographic maps. Transactions in GIS, 25 (6), 2888–2906.
  • Mango, J., et al. 2022. Multipurpose temporal GIS model for cadastral data management. International Journal of Geographical Information Science, 36 (6), 1205–1230.
  • Mika, M., Kotlarz, P., and Jurkiewicz, M., 2020. Strategy for cadastre development in Poland in 1989–2019. Survey Review, 52 (375), 555–563.
  • Mueller, M., Segl, K., and Kaufmann, H., 2004. Edge-and region-based segmentation technique for the extraction of large, man-made objects in high-resolution satellite imagery. Pattern Recognition, 37 (8), 1619–1628.
  • Naghavi, M., et al. 2022. VGI-based spatial data infrastructure for land administration. Land Use Policy, 114, 105969.
  • Ogryzek, M., Tarantino, E., and Rząsa, K., 2020. Infrastructure of the Spatial Information in the European Community (INSPIRE) based on examples of Italy and Poland. ISPRS International Journal of Geo-Information, 9 (12), 755.
  • Olfat, H., et al. 2018. Strategic actions for increasing the submission of digital cadastral data by the surveying industry based on lessons learned from Victoria, Australia. ISPRS International Journal of Geo-Information, 7 (2), 47.
  • Olfat, H., et al. 2020. Moving towards a single smart cadastral platform in Victoria, Australia. ISPRS International Journal of Geo-Information, 9 (5), 303.
  • Pathan, A.I. and Agnihotri, P., 2019. A combined approach for 1-D hydrodynamic flood modeling by using Arc-Gis, Hec-Georas, Hec-Ras Interface-a case study on Purna River of Navsari City, Gujarat. IJRTE, 8 (1), 1410–1417.
  • Pezeshk, A. and Tutwiler, R.L., 2011. Automatic feature extraction and text recognition from scanned topographic maps. IEEE Transactions on Geoscience and Remote Sensing, 49 (12), 5047–5063.
  • Rajabifard, A., et al. 2007. Assessing the worldwide comparison of cadastral systems. Land Use Policy, 24 (1), 275–288.
  • Shamsuddin, M.R., Abdul-Rahman, S., and Mohamed, A., 2018. Exploratory analysis of MNIST handwritten digit for machine learning modelling. In: Soft Computing in Data Science: 4th International Conference, SCDS 2018, 15–16 August 2018 Bangkok, Thailand. Singapore: Springer, 134–145.
  • Shapiro, L.G., 2020. Computer vision: the last 50 years. International Journal of Parallel, Emergent and Distributed Systems: IJPEDS, 35 (2), 112–117.
  • Shojaei, D., et al. 2016. Assessment of the Australian digital cadastre protocol (ePlan) in terms of supporting 3D building subdivisions. Land Use Policy, 56, 112–124.
  • Song, W. and Yang, X., 2013. A spatio-temporal cadastral data model based on space-time composite model. In: 2013 21st international conference on geoinformatics, 20–22 June 2013 Kaifeng, China. New York: IEEE, 1–4. https://doi.org/10.1109/Geoinformatics.2013.6626047.
  • Timár, G., Baiocchi, V., and Lelo, K., 2011. Geodetic datums of the Italian cadastral systems. Geographia Technica, 1, 82–90.
  • Tiwari, P.S., et al. 2009. Potential of IRS P-6 LISS IV for agriculture field boundary delineation. Journal of Applied Remote Sensing, 3 (1), 033528.
  • URT, 2022. Hotuba ya wizara ya ardhi, nyumba na maendeleo ya makazi kwa mwaka 2022/23 URT, T. Dar es Salaam: URT.
  • van Oosterom, P., et al. 2018. 3.3D cadastral information modelling. In: P. van Oosterom, ed. Best practices 3D cadastres. Copenhagen: FIG Publication, 95–132.
  • Von Gioi, R.G., et al. 2010. LSD: A fast line segment detector with a false detection control. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32 (4), 722–732.
  • Waldner, F. and Diakogiannis, F.I., 2020. Deep learning on edge: extracting field boundaries from satellite images with a convolutional neural network. Remote sensing of environment, 245 (2020), 111741.
  • Wang, X., Zheng, K., and Guo, J., 2006. Inertial and big drop fall algorithm. International Journal of Information Technology, 12 (4), 39–48.
  • Wayumba, G.O., 2013. An evaluation of the cadastral system in Kenya and a strategy for its modernization. PhD in Spatial Science. University of Nairobi.
  • Wu, Y., 1997. Automated map digitizing: developments in raster to vector conversion technology. Available from: https://proceedings.esri.com/library/userconf/proc97/proc97/to200/pap193/p193.htm [Accessed 02 Dec 2022].
  • Xia, X., Koeva, M., and Persello, C., 2019. Extracting cadastral boundaries from UAV images using fully convolutional networks. In: M.N. Koeva, ed. IGARSS 2019-2019 IEEE international geoscience and remote sensing symposium, 28 July–2 August 2019 Yokohama, Japan. New York: IEEE, 2455–2458.
  • Yildiz, O. and Erden, Ç., 2021. Cadastral updating: the case of Turkey. Survey Review, 53 (379), 335–348.
  • Yomralioglu, T. and McLaughlin, J., 2017. Cadastre: geo-information innovations in land administration. New York: Springer.
  • Young, N., Carter, L., and Evangelista, P., 2011. A MaxEnt model v3. 3.3 e tutorial (ArcGIS v10). Colorado, USA: Natural Resource Ecology Laboratory, Colorado State University and the National Institute of Invasive Species Science.
  • Younis, G., 2020. The effect of using multiple coordinate systems and datum transformations on the calculated coordinates in Palestine. Bulletin of Geography. Physical Geography Series, 19 (1), 31–41.
  • Zhou, Y., Qi, H., and Ma, Y., 2019. End-to-end wireframe parsing. In: R. Grompone, ed. Proceedings of the IEEE/CVF international conference on computer vision, 27–28 October 2019 Long Beach, CA, USA. New York: IEEE, 962–971.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.