221
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A mathematical programming approach for downscaling multi-layered multi-constraint land-use models

, , , , &
Pages 2020-2042 | Received 27 Jul 2022, Accepted 22 Jul 2023, Published online: 27 Jul 2023

References

  • Anwar, S., Khan, S., and Barnes, N., 2021. A deep journey into super-resolution: a survey. ACM Computing Surveys, 53 (3), 1–34.
  • Belchior, E.B., Alcântara, P.H.R., and Barbosa, C.F., 2017. Perspectivas e desafios para a região do Matopiba. Palmas: Embrapa Pesca e Aquicultura-Outras publicações técnicas (INFOTECA-E).
  • Bivand, R., Keitt, T., and Rowlingson, B., 2022. rgdal: Bindings for the 'geospatial’ data abstraction library. R package version 1.5–31. Vienna, Austria: CRAN Team. https://CRAN.R-project.org/package=rgdal
  • Brock, R.C., et al., 2021. Implementing Brazil’s Forest Code: a vital contribution to securing forests and conserving biodiversity. Biodiversity and Conservation, 30 (6), 1621–1635.
  • Chakir, R., 2009. Spatial downscaling of agricultural land-use data: an econometric approach using cross entropy. Land Economics, 85 (2), 238–251.
  • Cherkauer, K.A., and Sinha, T., 2010. Hydrologic impacts of projected future climate change in the Lake Michigan region. Journal of Great Lakes Research, 36, 33–50.
  • Chilès, J.P., and Desassis, N., 2018. Fifty years of kriging. In: Handbook of mathematical geosciences. Cham: Springer, 589–612.
  • Dantzig, G., 2016. Linear programming and extensions. In: Linear programming and extensions. Princeton: Princeton University Press.
  • de Andrade Junior, M.A.U., et al., 2019. Exploring future scenarios of ethanol demand in Brazil and their land-use implications. Energy Policy, 134, 110958. 2019.110958.
  • Dendoncker, N., Bogaert, P., and Rounsevell, M., 2006. A statistical method to downscale aggregated land use data and scenarios. Journal of Land Use Science, 1 (2–4), 63–82.
  • Fendrich, A.N., et al., 2022. A scalable method for the estimation of spatial disaggregation models. Computers & Geosciences, 166, 105161.
  • Fendrich, A.N., et al., 2020. Disclosing contrasting scenarios for future land cover in Brazil: results from a high-resolution spatiotemporal model. The Science of the Total Environment, 742, 140477.
  • Fundação Nacional do Índio, FUNAI. 2019. Terras Indígenas/Terras Indígenas em Estudos. Available from: http://www.funai.gov.br/index.php/shape [Accessed August 2019].
  • Giuliani, G., et al., 2022. Downscaling Switzerland land use/land cover data using nearest neighbors and an expert system. Land, 11 (5), 615.
  • Hanretty, C., 2017. Areal interpolation and the UK’s referendum on EU membership. Journal of Elections, Public Opinion and Parties, 27 (4), 466–483.
  • Hasegawa, T., et al., 2017. Global land-use allocation model linked to an integrated assessment model. The Science of the Total Environment, 580, 787–796.
  • Havlík, P., et al., 2014. Climate change mitigation through livestock system transitions. Proceedings of the National Academy of Sciences of the United States of America, 111 (10), 3709–3714.
  • Hijmans, R.J., and Etten, J., 2012. raster: Geographic analysis and modeling with raster data. R package version 2.0–12. Vienna, Austria: CRAN Team.
  • Holzman, A.G., 2020. Mathematical programming for operations researchers and computer scientists. Boca Raton, FL: CRC Press.
  • Hoskins, A.J., et al., 2016. Downscaling land‐use data to provide global 30″ estimates of five land‐use classes. Ecology and Evolution, 6, 3040–3055.
  • Houet, T., et al., 2017. Downscaling scenarios of future land use and land cover changes using a participatory approach: an application to mountain risk assessment in the Pyrenees (France). Regional Environmental Change, 17 (8), 2293–2307.
  • Instituto Nacional de Colonização e Reforma Agrária, INCRA. 2019. Áreas Quilombolas/Sistema de Certificação de Imóveis Rurais. Available from: https://certificacao.incra.gov.br/csv_shp/export_shp.py [Accessed August 2019].
  • Krisztin, T., et al., 2015. Global high-resolution land-use change projections: a Bayesian multinomial logit downscaling approach incorporating model uncertainty and spatial effects. Vienna, Austria: IIASA.
  • Li, X., et al., 2016. A cellular automata downscaling based 1 km global land use datasets (2010–2100). Science Bulletin, 61 (21), 1651–1661.
  • Liu, X.H., Kyriakidis, P.C., and Goodchild, M.F., 2008. Population‐density estimation using regression and area‐to‐point residual kriging. International Journal of Geographical Information Science, 22 (4), 431–447.
  • Malone, B.P., et al., 2012. A general method for downscaling earth resource information. Computers & Geosciences, 41, 119–125.
  • MAPBIOMAS, 2019. MapBiomas general “handbook”: Algorithm Theoretical Basis Document (ATBD). Brazil: MAPBIOMAS.org.
  • Mingoti, R., et al., 2014. Matopiba: caracterização das áreas com grande produção de culturas anuais. Embrapa Territorial-Nota Técnica/Nota Científica (ALICE). Brazil: Embrapa.
  • Ministério do Meio Ambiente, MMA. 2019. Áreas Protegidas/Cadastro Nacional de Unidades de Conservação. Available from: https://www.mma.gov.br/areas-protegidas/cadastro-nacional-de-ucs/dados-georreferenciados [Accessed August 2019].
  • Nasrollahi, K., and Moeslund, T.B., 2014. Super-resolution: a comprehensive survey. Machine Vision and Applications, 25 (6), 1423–1468.
  • Page, Y.L., et al., 2016. Downscaling land use and land cover from the Global Change Assessment Model for coupling with Earth system models. Geoscientific Model Development, 9 (9), 3055–3069.
  • Pardo-Igúzquiza, E., Chica-Olmo, M., and Atkinson, P.M., 2006. Downscaling cokriging for image sharpening. Remote Sensing of Environment, 102 (1–2), 86–98.
  • R Core Team 2021. R: A Language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available from: https://www.R-project.org/.
  • Ramos, R.G., et al., 2023. Current policies are insufficient to protect or restore Brazil's cost-effective conservation priority zones. Environmental Research Letters, 18 (6), 065006.
  • Schroeder, J.P., 2017. Hybrid areal interpolation of census counts from 2000 blocks to 2010 geographies. Computers, Environment and Urban Systems, 62, 53–63.
  • Shi, X., et al., 2021. A scenario-and spatial-downscaling-based land-use modeling framework to improve the projections of plausible futures: a case study of the Guangdong–Hong Kong–Macao Greater Bay Area, China. Sustainability Science, 16 (6), 1977–1998.
  • Soterroni, A.C., et al., 2018. Future environmental and agricultural impacts of Brazil’s Forest Code. Environmental Research Letters, 13 (7), 074021.
  • Soterroni, A.C., et al., 2019. Expanding the soy moratorium to Brazil’s cerrado. Science Advances, 5 (7), eaav7336.
  • Soares-Filho, B.S., et al., 2006. Modelling conservation in the Amazon basin. Nature, 440 (7083), 520–523.
  • Soares‐Filho, B., et al., 2004. Simulating the response of land‐cover changes to road paving and governance along a major Amazon highway: the Santarém–Cuiabá corridor. Global Change Biology, 10 (5), 745–764.
  • Souza, C.M., et al., 2020. Reconstructing three decades of land use and land cover changes in Brazilian biomes with landsat archive and earth engine. Remote Sensing, 12 (17), 2735.
  • Stellato, B., et al., 2020. OSQP: an operator splitting solver for quadratic programs. Mathematical Programming Computation, 12 (4), 637–672.
  • Sunde, M.G., et al., 2017. Integrating downscaled CMIP5 data with a physically based hydrologic model to estimate potential climate change impacts on streamflow processes in a mixed‐use watershed. Hydrological Processes, 31 (9), 1790–1803.
  • Roxburgh, T., et al., 2020. Global future: assessing the global economic impacts of environmental change to support policy-making. United States: World Wildlife Fund.
  • Tobler, W.R., 1970. A computer movie simulating urban growth in the Detroit region. Economic Geography, 46 (sup1), 234–240.
  • Tobler, W.R., 1979. Smooth pycnophylactic interpolation for geographical regions. Journal of the American Statistical Association, 74 (367), 519–530.
  • Vanderbei, R.J., 2020. Linear programming. United States: Springer International Publishing.
  • Van Ouwerkerk, J.D., 2006. Image super-resolution survey. Image and Vision Computing, 24 (10), 1039–1052.
  • Vernon, C.R., et al., 2018. Demeter–a land use and land cover change disaggregation model. Journal of Open Research Software, 6 (1), 15.
  • Wang, Z., Chen, J., and Hoi, S.C., 2021. Deep learning for image super-resolution: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43 (10), 3365–3387.
  • West, T.O., et al., 2014. Downscaling global land cover projections from an integrated assessment model for use in regional analyses: results and evaluation for the US from 2005 to 2095. Environmental Research Letters, 9 (6), 064004.
  • You, L., and Wood, S., 2006. An entropy approach to spatial disaggregation of agricultural production. Agricultural Systems, 90 (1–3), 329–347.
  • Zheng, H., et al., 2017. Performance evaluation of downscaling Sentinel-2 imagery for land use and land cover classification by spectral-spatial features. Remote Sensing, 9 (12), 1274.
  • Zilli, M., et al., 2020. The impact of climate change on Brazil’s agriculture. The Science of the Total Environment, 740, 139384.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.