255
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Supervised method for blood vessel segmentation from coronary angiogram images using 7-D feature vector

, , &
Pages 196-203 | Received 02 Oct 2015, Accepted 23 Feb 2016, Published online: 21 Apr 2016

References

  • Tsipouras, M. G., Exarchos, T. P., Fotiadis, D., Kotsia, A. P., Vakalis, K. V., Naka, K. K. and Michalis, L. K. Automated diagnosis of coronary artery disease based on data mining and fuzzy modeling. IEEE Trans. Inf. Technol. Biomed., 2008, 12, (4), 447–458.
  • Josephson, S. A., Bryant, S. O., Mak, H. K., Johnston, S. C., Dillon, W. P. and Smith, W. S. Evaluation of carotid stenosis using CT angiography in the initial evaluation of stroke and TIA. Neurology, 2004, 63, (3), 457–460.
  • Chaudhry, M. A., Waseem, M., Ahmad, F., Ashraf, M. Z. and Bhatti, M. A. Frequency of coronary heart disease: risk factors among doctors of CMH Lahore medical and dental college. Ann. Punjab Med. Coll., 2012, 6, (2), 156–160.
  • Lau, G. T., Ridley, L. J., Schieb, M. C., Brieger, D. B., Freedman, S. B., Wong, L. A. and Kritharides, L. Coronary artery stenoses: detection with calcium scoring, CT angiography, and both methods combined 1. Radiology, 2005, 235, (2), 415–422.
  • Solzbach, U., Oser, U., Rombach, M., Wollschläger, H. and Just, H. Optimum angiographic visualization of coronary segments using computer-aided 3D-reconstruction from biplane views. Comput. Biomed. Res., 1994, 27, (3), 178–198.
  • Dumay, A., Reiber, J. H. and Gerbrands, J. J. Determination of optimal angiographic viewing angles: basic principles and evaluation study. IEEE Trans. Med. Imaging, 1994, 13, (1), 13–24.
  • Sato, Y., Araki, T., Hanayama, M., Naito, H. and Tamura, S. A viewpoint determination system for stenosis diagnosis and quantification in coronary angiographic image acquisition. IEEE Trans. Med. Imaging, 1998, 17, (1), 121–137.
  • Lin, C. Y. and Ching, Y. T. Extraction of coronary arterial tree using cine X-ray angiograms. Biomed. Eng.: Appl. Basis Commun., 2005, 17, (03), 111–120.
  • Tayebi, R. M., Sulaiman, B., Suhaiza, P., Wirza, R., Dimon, M. Z., Kadiman, S., … and Mazaheri, S. Coronary artery segmentation in angiograms with pattern recognition techniques—a survey. IEEE Int. Conf. on Advanced Computer Science Applications and Technologies, December 2013, pp. 321–326.
  • Wink, O., Niessen, W. J. and Viergever, M. Multiscale vessel tracking. IEEE Trans. Med. Imaging, 2004, 23, (1), 130–133.
  • Wong, W. C. and Chung, A. C. Probabilistic vessel axis tracing and its application to vessel segmentation with stream surfaces and minimum cost paths. Med. Image Anal., 2007, 11, (6), 567–587.
  • Zhou, S., Chen, W., Zhang, Z. and Yang, J. Automatic segmentation of coronary angiograms based on probabilistic tracking. 3rd IEEE Int. Conf. on Bioinformatics and Biomedical Engineering, June 2009, pp. 1–4.
  • Gooya, A., Liao, H., Matsumiya, K., Masamune, K., Masutani, Y. and Dohi, T. A variational method for geometric regularization of vascular segmentation in medical images. IEEE Trans. Image Process., 2008, 17, (8), 1295–1312.
  • Sum, K. W. and Cheung, P. Vessel extraction under non-uniform illumination: a level set approach. IEEE Trans. Biomed. Eng., 2008, 55, (1), 358–360.
  • Shang, Y., Deklerck, R., Nyssen, E., Markova, A., De Mey, J., Yang, X. and Sun, K. Vascular active contour for vessel tree segmentation. IEEE Trans. Biomed. Eng., 2011, 58, (4), 1023–1032.
  • Manniesing, R., Viergever, M. and Niessen, W. J. Vessel axis tracking using topology constrained surface evolution. IEEE Trans. Med. Imaging, 2007, 26, (3), 309–316.
  • Staal, J., Abràmoff, M. D., Niemeijer, M., Viergever, M. and Van Ginneken, B. Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging, 2004, 23, (4), 501–509.
  • Salazar-Gonzalez, A. G., Li, Y. and Liu, X. Retinal blood vessel segmentation via graph cut. 11th IEEE Int. Conf. on Control Automation Robotics & Vision (ICARCV), December 2010, pp. 225–230.
  • Schaap, M., Neefjes, L., Metz, C., van der Giessen, A., Weustink, A., Mollet, N. and Niessen, W. Coronary lumen segmentation using graph cuts and robust kernel regression, in ‘Information processing in medical imaging’, 528–539; January2009 (Springer, Berlin, Heidelberg).
  • Zana, F. and Klein, J. C. Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans. Image Process., 2001, 10, (7), 1010–1019.
  • Sun, K., Chen, Z., Jiang, S. and Wang, Y. Morphological multiscale enhancement, fuzzy filter and watershed for vascular tree extraction in angiogram. J. Med. Syst., 2011, 35, (5), 811–824.
  • Gardner, G. G., Keating, D., Williamson, T. H. and Elliott, A. T. Automatic detection of diabetic retinopathy using an artificial neural network: a screening tool. Br. J. Ophthalmol., 1996, 80, (11), 940–944.
  • Sinthanayothin, C., Boyce, J. F., Cook, H. L. and Williamson, T. H. Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. Br. J. Ophthalmol., 1999, 83, (8), 902–910.
  • Kirbas, C. and Quek, F. A review of vessel extraction techniques and algorithms. ACM Comput. Surv. (CSUR), 2004, 36, (2), 81–121.
  • Dehkordi, M. T., Sadri, S. and Doosthoseini, A. A review of coronary vessel segmentation algorithms. J. Med. Signals Sens., 2011, 1, (1), 49.
  • Sun, K. Development of segmentation methods for vascular angiogram. IETE Tech. Rev., 2011, 28, (5), 392–399.
  • Li, C., Kao, C. Y., Gore, J. C. and Ding, Z. Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process., 2008, 17, (10), 1940–1949.
  • Zhang, K., Song, H. and Zhang, L. Active contours driven by local image fitting energy. Pattern Recogn., 2010, 43, (4), 1199–1206.
  • Li, M., He, H., Yi, J., Lv, B. and Zhao, M. Segmentation and tracking of coronary artery using graph-cut in CT angiographic. 2nd IEEE Int. Conf. on Biomedical Engineering and Informatics, October 2009, pp. 1–4.
  • Sun, K., Chen, Z. and Jiang, S. Local morphology fitting active contour for automatic vascular segmentation. IEEE Transact. Biomed. Eng., 2012, 59, (2), 464–473.
  • Xiao, R., Yang, J., Li, T. and Liu, Y. Ridge-based automatic vascular centerline tracking in x-ray angiographic images, in ‘Intelligent science and intelligent data engineering’, 793–800; 2013 (Springer, Berlin, Heidelberg).
  • Taghizadeh Dehkordi, M., Hoseini, A. M. D., Sadri, S. and Soltanianzadeh, H. Local feature fitting active contour for segmenting vessels in angiograms. IET Comput. Vis., 2014, 8, (3), 161–170.
  • Chanwimaluang, T., Fan, G. and Fransen, S. R. Hybrid retinal image registration. IEEE Trans. Inf. Technol. Biomed., 2006, 10, (1), 129–142.
  • Kang, W., Wang, K., Chen, W. and Kang, W. Segmentation method based on fusion algorithm for coronary angiograms. In 2nd Int. Congress on Image and Signal Processing, 2009. CISP'09., October 2009, IEEE, pp. 1–4.
  • Kang, W., Kang, W., Li, Y. and Wang, Q. The segmentation method of degree-based fusion algorithm for coronary angiograms. In 2013 Int. Conf. on Measurement, Information and Control (ICMIC) Tianjin, August 2013, IEEE, Vol. 1, pp. 696–699.
  • Al-Rawi, M., Qutaishat, M. and Arrar, M. An improved matched filter for blood vessel detection of digital retinal images. Comput. Biol. Med., 2007, 37, (2), 262–267.
  • Zhou, L., Rzeszotarski, M. S., Singerman, L. J. and Chokreff, J. M. The detection and quantification of retinopathy using digital angiograms. IEEE Trans. Med. Imaging, 1994, 13, (4), 619–626.
  • Niemeijer, M., Van Ginneken, B., Staal, J., Suttorp-Schulten, M. S. and Abràmoff, M. D. Automatic detection of red lesions in digital color fundus photographs. IEEE Trans. Med. Imaging, 2005, 24, (5), 584–592.
  • Zhang, B., Wu, X., You, J., Li, Q. and Karray, F. Detection of microaneurysms using multi-scale correlation coefficients. Pattern Recogn., 2010, 43, (6), 2237–2248.
  • Streeter, L. and Cree, M. J. Microaneurysm detection in colour fundus images. Image Vis. Comput. New Zealand, 2003, 280–284. Available at: http://sprg.massey.ac.nz/ivcnz/Proceedings/IVCNZ_51.pdf.
  • Jagoe, R., Arnold, J., Blauth, C., Smith, P. L. C., Taylor, K. M. and Wootton, R. Measurement of capillary dropout in retinal angiograms by computerised image analysis. Pattern Recogn. Lett., 1992, 13, (2), 143–151.
  • Hu, M. K. Visual pattern recognition by moment invariants. IEEE Trans. Inform. Theory, 1962, 8, (2), 179–187.
  • Jiang, X. and Mojon, D. Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images. IEEE Trans. Pattern Anal. Mach. Intell., 2003, 25, (1), 131–137.
  • Khowaja, S., Shah, S. Z. S. and Memon, M. U. Noise reduction technique for images using radial basis function neural networks. Mehran Univ. Res. J., 2014, 33, (03), 278–285.
  • Niemeijer, M., Staal, J., van Ginneken, B., Loog, M. and Abramoff, M. D. Comparative study of retinal vessel segmentation methods on a new publicly available database, in ‘Medical imaging 2004’ 648–656; May 2004 (International Society for Optics and Photonics. San Diego, CA).
  • Chutatape, O., Zheng, L. and Krishnan, S. M. Retinal blood vessel detection and tracking by matched Gaussian and Kalman filters. Proc. 20th Annual Int. Conf. IEEE Engineering in Medicine and Biology Society, October 1998, Vol. 6, pp. 3144–3149.
  • Kampouraki, A., Manis, G. and Nikou, C. Heartbeat time series classification with support vector machines. IEEE Trans. Inf. Technol. Biomed., 2009, 13, (4), 512–518.
  • Zuluaga, M. A., Magnin, I. E., Hoyos, M. H., Leyton, E. J. D., Lozano, F. and Orkisz, M. Automatic detection of abnormal vascular cross-sections based on density level detection and support vector machines. Int. J. Comput. Ass. Radiol. Surg., 2011, 6, (2), 163–174.
  • Qian, Y., Eiho, S., Sugimoto, N. and Fujita, M. Automatic extraction of coronary artery tree on coronary angiograms by morphological operators. In Computers in Cardiology 1998, September 1998, IEEE, pp. 765–768.
  • Wang, S., Li, B. and Zhou, S. A segmentation method of coronary angiograms based on multi-scale filtering and region-growing. In 2012 Int. Conf. on Biomedical Engineering and Biotechnology (iCBEB), May 2012, IEEE, pp. 678–681.
  • Cruz-Aceves, I., Hernandez-Aguirre, A. and Valdez, S. I. On the performance of nature inspired algorithms for the automatic segmentation of coronary arteries using Gaussian matched filters. Appl. Soft Comput., 2016. doi:10.1016/j.asoc.2016.01.030.
  • Yang, Y., Tannenbaum, A., Giddens, D. and Stillman, A. Automatic segmentation of coronary arteries using bayesian driven implicit surfaces. In 4th IEEE Int. Symp. on Biomedical Imaging: From Nano to Macro, 2007. ISBI 2007, April 2007, IEEE, pp. 189–192.
  • Wang, Y. and Liatsis, P. Automatic segmentation of coronary arteries in CT imaging in the presence of kissing vessel artifacts. IEEE Trans. Inf. Technol. Biomed., 2012, 16, (4), 782–788.
  • Frangi, A. F., Niessen, W. J., Vincken, K. L. and Viergever, M. A. Multiscale vessel enhancement filtering, in ‘Medical image computing and computer-assisted intervention—MICCAI'98’, 1998, pp. 130–137 (Springer, Berlin, Heidelberg).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.