265
Views
12
CrossRef citations to date
0
Altmetric
Articles

Computer-aided detection and characterization of stroke lesion – a short review on the current state-of-the art methods

&
Pages 1-22 | Received 24 Dec 2016, Accepted 19 Aug 2017, Published online: 08 Sep 2017

References

  • Dalal P, Bhattacharjee M, Vairale J, et al. UN millennium development goals: can we halt the stroke epidemic in India. Ann Indian Acad Neurol. 2007;10:130–136. doi: 10.4103/0972-2327.34791
  • Gupta R, Joshi P, Mohan V, et al. Epidemiology and causation of coronary heart disease and stroke in India. Heart. 2008;94:16–26. doi: 10.1136/hrt.2007.132951
  • Goldstein LB, Adams R, Alberts MJ. Primary prevention of ischemic stroke: a guideline from the American heart association/American stroke association stroke council: cosponsored by the atherosclerotic peripheral vascular disease interdisciplinary working group; cardiovascular nursing council; clinical cardiology council; nutrition, physical activity, and metabolism council; and the quality of care and outcomes research interdisciplinary working group: The American academy of neurology affirms the value of this guideline. Stroke. 2006;37:1583–1633. doi: 10.1161/01.STR.0000223048.70103.F1
  • Wardlaw JM. Neuroimaging in acute ischaemic stroke: insights into unanswered questions of pathophysiology. J Intern Med. 2010;267:172–190. doi: 10.1111/j.1365-2796.2009.02200.x
  • Rekik I, Allassonnière S, Carpenter TK, et al. Medical image analysis methods in MR/CT-imaged acute-subacute ischemic stroke lesion: segmentation, prediction and insights into dynamic evolution simulation models. a critical appraisal. NeuroImage. 2012;1:164–178. doi: 10.1016/j.nicl.2012.10.003
  • Tomura N, Uemura K, Inugami A, et al. Early CT finding in cerebral infarction: obscuration of the lentiform nucleus. Radiology. 1988;168:463–467. doi: 10.1148/radiology.168.2.3393665
  • Mousa AE, Elrakhawy MM, Zaher AA. Multimodal CT assessment of acute ischemic stroke. The Egyptian J Radiol Nuclear Med. 2013;44:71–81. doi: 10.1016/j.ejrnm.2012.12.006
  • Kidwell CS, Chalela JA, Saver JL. Comparison of MRI and CT for detection of acute intracerebral hemorrhage. JAMA. 2004;292:1823–1830. doi: 10.1001/jama.292.15.1823
  • Ischemic Stroke Lesion Segmentation (ISLES) challenge. Available from: http://www.isles-challenge.org
  • de Haan B, Clas P, Juenger H, et al. Fast semi-automated lesion demarcation in stroke. NeuroImage. 2015;9:69–74. doi: 10.1016/j.nicl.2015.06.013
  • Kassner A, Liu F, Thornhill RE, et al. Prediction of hemorrhagic transformation in acute ischemic stroke using texture analysis of postcontrast T1-weighted MR images. J Magn Reson Imaging. 2009;30:933–941. doi: 10.1002/jmri.21940
  • Bentley P, Ganesalingam J, Lalani A, et al. Prediction of stroke thrombolysis outcome using CT brain machine learning. NeuroImage. 2014;4:635–640. doi: 10.1016/j.nicl.2014.02.003
  • Cuingnet R, Rosso C, Lehéricy S, et al. Spatially regularized SVM for the detection of brain areas associated with stroke outcome. Medical image computing and computer-assisted intervention – MICCAI 2010. Lect Notes Comput Sci. 2010;6361:316–323. doi: 10.1007/978-3-642-15705-9_39
  • Nabizadeh N, John N, Wright C. Histogram-based gravitational optimization algorithm on single MR modality for automatic brain lesion detection and segmentation. Expert Syst Appl. 2014;41:7820–7836. doi: 10.1016/j.eswa.2014.06.043
  • Ghosh N, Sun Y, Bhanu B, et al. Automated detection of brain abnormalities in neonatal hypoxia ischemic injury from MR images. Med Image Anal. 2014;18:1059–1069. doi: 10.1016/j.media.2014.05.002
  • Oliveira MS, Fernandes PT, Avelar WM, et al. Texture analysis of computed tomography images of acute ischemic stroke patients. Braz J Med Biol Res. 2009;42:1076–1079. doi: 10.1590/S0100-879X2009005000034
  • Kabir Y, Dojat M, Scherrer B, et al. Multimodal MRI segmentation of ischemic stroke lesions. IEEE Eng Med Biol Soc. 2007: 1595–1598.
  • Hevia-Montiel N, Jimenez-Alaniz JR, Medina-Banuelos V, et al. Robust nonparametric segmentation of infarct lesion from diffusion-weighted MR images. 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007. EMBS; 2007. p. 2102–2105.
  • Chawla M, Sharma S, Sivaswamy J, et al. A method for automatic detection and classification of stroke from brain CT images. Annual International Conference on Engineering in Medicine and Biology Society; 2009 Sep 3–6; p. 3581–3584.
  • Bagher-Ebadian H, Jafari-Khouzani K, Mitsias PD, et al. Predicting final extent of ischemic infarction using artificial neural network analysis of multi-parametric MRI in patients with stroke. PloS One. 2011;6:e22626. doi: 10.1371/journal.pone.0022626
  • Martel A, Allder S, Delay G, et al. Measurement of infarct volume in stroke patients using adaptive segmentation of diffusion weighted MR images. Medical Image Computing and Computer-Assisted Intervention–MICCAI 1999. Springer. p. 22–31.
  • Wintermark M, Arora S, Tong E, et al. Carotid plaque computed tomography imaging in stroke and nonstroke patients. Ann Neurol. 2008;64:149–157. doi: 10.1002/ana.21424
  • Wintermark M, Reichhart M, Thiran J-P, et al. Prognostic accuracy of cerebral blood flow measurement by perfusion computed tomography, at the time of emergency room admission, in acute stroke patients. Ann Neurol. 2002;51:417–432. doi: 10.1002/ana.10136
  • Kamalian S, Kamalia S, Konsta AA, et al. CT perfusion mean transit time maps optimally distinguish benign oligemia from true “at-risk” ischemic penumbra, but thresholds vary by postprocessing technique. AJNR. 2012;33:545–549. doi: 10.3174/ajnr.A2809
  • Kawiorski MM, Vicente A, Lourido D, et al. Good clinical and radiological correlation from standard perfusion computed tomography accurately identifies salvageable tissue in ischemic stroke. J Stroke Cerebrovasc Dis. 2016;25:1062–1069. doi: 10.1016/j.jstrokecerebrovasdis.2016.01.009
  • Kheradmand A, Fisher M, Paydarfar D. Ischemic stroke in evolution: predictive value of perfusion computed tomography. J Stroke Cerebrovasc Dis. 2014;23:836–843. doi: 10.1016/j.jstrokecerebrovasdis.2013.07.014
  • Bivard A, Levi C, Krishnamurthy V, et al. Defining acute ischemic stroke tissue pathophysiology with whole brain CT perfusion. J Neuroradiol. 2014;41:307–315. doi: 10.1016/j.neurad.2013.11.006
  • Soltanian-Zadeh H, Pasnoor M, Hammoud R, et al. MRI tissue characterization of experimental cerebral ischemia in rat. J Magn Reson Imaging. 2003;17:398–409. doi: 10.1002/jmri.10256
  • Soltanian-Zadeh H, Bagher-Ebadian H, Ewing JR, et al. Multiparametric iterative self-organizing data analysis of ischemic lesions using pre- or post-Gd T1 MRI. Cerebrovasc Dis. 2007;23:91–102. doi: 10.1159/000097044
  • Dwyer MG, Bergsland N, Saluste E, et al. Application of hidden Markov random field approach for quantification of perfusion/diffusion mismatch in acute ischemic stroke. Neurol Res. 2008;30:827–834. doi: 10.1179/174313208X340987
  • Olivot JM, Mlynash M, Thijs VN, et al. Optimal tmax threshold for predicting penumbral tissue in acute stroke. Stroke. 2009;40:469–475. doi: 10.1161/STROKEAHA.108.526954
  • Olivot JM, Mlynash M, Inoue M, et al. Hypoperfusion intensity ratio predicts infarct progression and functional outcome in the DEFUSE 2 cohort. Stroke. 2014;45:1018–1023. doi: 10.1161/STROKEAHA.113.003857
  • Lansberg M, Lee J, Christensen S, et al. Utility of automated MRI analysis software (RAPID) to select patients for reperfusion therapy: a pooled analysis of the EPITHET and DEFUSE studies. Stroke. 2011;42:1608–1614. doi: 10.1161/STROKEAHA.110.609008
  • Mlynash M, Lansberg MG, De Silva DA, et al. Refining the definition of the malignant profile: insights from the DEFUSE-EPITHET pooled dataset. Stroke. 2011;42:1270–1275. doi: 10.1161/STROKEAHA.110.601609
  • Hayley M, Wheeler MM, Inoue M, et al. Early diffusion weighted imaging and perfusion weighted imaging lesion volumes forecast final infarct size in DEFUSE 2. Stroke. 2013;44:681–685. doi: 10.1161/STROKEAHA.111.000135
  • Chan T. Computer aided detection of small acute intracranial hemorrhage on computer tomography of brain. Comput Med Imaging Graphics. 2007;31:285–298. doi: 10.1016/j.compmedimag.2007.02.010
  • Tang F-H, Ng DK, Chow DH. An image feature approach for computer-aided detection of ischemic stroke. Comput Biol Med. 2011;41:529–536. doi: 10.1016/j.compbiomed.2011.05.001
  • Somasundaram K, Kalaiselvi T. Brain extraction method for T1-weighted magnetic resonance scans. Signal Processing and Communications; 2010 Jul 18–21. p. 1–5.
  • Park JG, Lee C. Skull stripping based on region growing for magnetic resonance brain images. NeuroImage. 2009;47:1394–1407. doi: 10.1016/j.neuroimage.2009.04.047
  • Galdames FJ, Jaillet F, Perez CA. An accurate skull stripping method based on simplex meshes and histogram analysis for magnetic resonance images. J Neurosci Methods. 2012;206:103–119. doi: 10.1016/j.jneumeth.2012.02.017
  • Sadananthan SA, Zheng W, Chee MWL, et al. Skull stripping using graph cuts. NeuroImage. 2010;49:225–239. doi: 10.1016/j.neuroimage.2009.08.050
  • Roslan R, Jamil N, Mahmud R. Skull stripping of MRI brain images using mathematical morphology. IEEE EMBS Conference on Biomedical Engineering and Sciences; 2010 Nov 30–2 Dec. p. 26–31.
  • Zhao W, Xie M, Gao J. A modified skull-stripping method based on morphological processing. Second International Conference on Computer Modeling and Simulation; 2010 Jan 22–24. p. 159–163.
  • Benson CC, Lajish VL. Morphology based enhancement and skull stripping of MRI brain images. International Conference on Intelligent Computing Applications; 2014 Mar 6–7. p. 254–257.
  • Eskildsen SF, Coupe P, Fonov V, et al. BEaST: brain extraction based on nonlocal segmentation technique. NeuroImage. 2012;59:2362–2373. doi: 10.1016/j.neuroimage.2011.09.012
  • Shattuck DW, Sandor-Leashy SR, Schaper KA, et al. Magnetic resonance image tissue classification using a partial volume model. Neuroimage. 2001;13:856–876. doi: 10.1006/nimg.2000.0730
  • Tao X, Chang M-C. A skull stripping method using deformable surface and tissue classification. Proceedings of SPIE Medical Imaging; 2010.
  • Matesin M, Loncaric S, Petravic D. A rule-based approach to stroke lesion analysis from CT brain images. International Symposium on Image and Signal Processing and Analysis; 2001 Jun 19–21. p. 219–223.
  • Storelli L, Pagani E, Rocca MA, et al. A semi-automatic method for segmentation of multiple sclerosis lesions on dual-echo magnetic resonance images. Brainles 2015 MICCAI Workshop. p. 60–67.
  • Ozertem U, Gruber A, Erdogmus D. Automatic brain image segmentation for evaluation of experimental ischemic stroke using gradient vector flow and kernel annealing. International Joint Conference on Neural Networks; 2007 Aug; p. 1397–1400.
  • Stein B, Lisin D, Horowitz J, et al. Statistical and deformable model approaches to the segmentation of MR imagery and volume estimation of stroke lesions. Medical Image Computing and Computer-Assisted Intervention– MICCAI 2001. Springer. p. 829–836.
  • Derntl B, Menze C, Plant C. Stroke lesion segmentation using a probabilistic atlas of cerebral vascular territories. Brainles 2015 MICCAI Workshop. p. 52–59.
  • Feng C, Zhao D, Huang M. Segmentation of stroke lesions in multi-spectral MR images using bias correction embedded FCM and three phase level set. Ischemic Stroke Lesion Segmentation (ISLES) challenge – MICCAI 2015; 2015. p. 3–8.
  • Haeck T, Maes F, Suetens P. Automated model-based segmentation of ischemic stroke in MR images. Ischemic Stroke Lesion Segmentation (ISLES) challenge – MICCAI 2015; 2015. p. 47–50.
  • Usinskas A, Dobrovolskis R, Tomandl B. Ischemic stroke segmentation on CT images using joint features. Informatica. 2004;15:283–290.
  • Puonti O, van Leemput K. Simultaneous whole-brain segmentation and white matter lesion detection using contrast-adaptive probabilistic models. Brainles 2015 MICCAI Workshop. p. 12–19.
  • Alberts E, Chstpisy G, Tarabalka Y, et al. A nonparametric model for brain tumor segmentation and volumetry in longitudinal MR sequences. Brainles 2015 MICCAI Workshop. p. 20–27.
  • Ghafaryasl B, Van Der Lijn F, Poels M, et al. A computer aided detection system for cerebral microbleeds in brain MRI. IEEE international Symposium on Biomedical Imaging; 2012 May 2–5. p. 138–141.
  • Hema Rajini N, Bhavani R. Computer aided detection of ischemic stroke using segmentation and texture features. Measurement. 2013;46:1865–1874. doi: 10.1016/j.measurement.2013.01.010
  • Gupta S, Mishra A, Menaka R. Ischemic stroke detection using image processing and ANN. International Conference on Advanced Communication Control and Computing Technologies (ICACCCT); 2014. p. 1416–1420.
  • Fueanggan S, Chokchaitam S, Muengtaweepongs S. Automatic detection of ischemic stroke area from CT perfusion maps cerebral blood volume and cerebral blood flow. International Symposium on Signal Processing and Communications Systems; 2011 Dec 7–9. p. 1–6.
  • Sajjadi M, Amirfattahi R, Ahmadzadeh MR, et al. A new filter bank algorithm for enhancement of early signs of ischemic stroke in brain CT images. IEEE international Conference on Signal and Image Processing Applications (ICSIPA); 2011. p. 384–389.
  • Thangavel M, Chandrasekaran M, Madheswaran M. Carotid plaque classification using contourlet features and support vector machines. J Comput Sci. 2014;10:1642–1649. doi: 10.3844/jcssp.2014.1642.1649
  • Lahmiri S, Boukadoum M, Di Ieva A. Fractal-based arteriovenous malformations detection in brain magnetic resonance images. IEEE 12th International Conference on New Circuits and Systems; 2014 Jun 22–25. p. 21–24.
  • Mustafa S, Abbosh A, Henin B, et al. Brain stroke detection using continuous wavelets transform matching filters. International Biomedical Engineering Conference; 2012 Dec 20–22; p. 194–197.
  • Acharya UR, VinithaSree S, Swapna G, et al. Automated EEG analysis of epilepsy: a review. Knowl Based Syst. 2013;45:147–165. doi: 10.1016/j.knosys.2013.02.014
  • Wu C, Zhao W. Using fractal analysis to characterize cerebral blood flow and immuno histopathology for ischemic stroke research. IEEE Eng Med Biol Soc. 2005;2:1563–1566.
  • Reza SM, Pei L, Iftekharuddin KM. Ischemic stroke lesion segmentation using local gradient and texture features. Ischemic Stroke Lesion Segmentation (ISLES) challenge – MICCAI 2015. p. 23–26.
  • Huang S, Shen Q, Duong TQ. Artificial neural network prediction of ischemic tissue fate in acute stroke imaging. J Cereb Blood Flow Metab. 2010;30:1661–1670. doi: 10.1038/jcbfm.2010.56
  • Mougiakakou SG, Golemati S, Gousias I, et al. Computer-aided diagnosis of carotid atherosclerosis based on ultrasound image statistics, laws’ texture and neural networks. Ultrasound Med Biol. 2007;33:26–36. doi: 10.1016/j.ultrasmedbio.2006.07.032
  • Hachaj T, Ogiela MR. Neural network approach for identification of selected brain perfusion abnormalities. Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS); 2012 Jul 4–6. p. 52–57.
  • Bhanu Prakash KN, Gupta V, Bilello M, et al. Identification, segmentation, and image property study of acute infarcts in diffusion-weighted images by using a probabilistic neural network and adaptive Gaussian mixture model. Acad Radiol. 2006;13:1474–1484. doi: 10.1016/j.acra.2006.09.045
  • Mahmood Q, Basit A. Automatic ischemic stroke lesion segmentation in multi-spectral MRI images using random forests classifier. Ischemic Stroke Lesion Segmentation (ISLES) challenge – MICCAI 2015. p. 43–47.
  • Chen L, Bentley P, Rueckert D. A novel framework for sub-acute stroke lesion segmentation based on random forest. Ischemic Stroke Lesion Segmentation (ISLES) challenge – MICCAI 2015. p. 9–12.
  • Muschelli J. Prediction of ischemic lesions using local image properties and random forests. Proceedings of the Ischemic Stroke Lesion Segmentation (ISLES) challenge – MICCAI 2015. p. 63–68.
  • Maier O, Wilms M, Handels H. Random forests with selected features for stroke lesion segmentation. Ischemic Stroke Lesion Segmentation (ISLES) challenge – MICCAI 2015. p. 17–22.
  • Wang C-W, Lee J-H. Stroke lesion segmentation of 3D brain MRI using multiple random forests and 3D registration. Ischemic Stroke Lesion Segmentation (ISLES) challenge – MICCAI 2015. p. 35–38.
  • Jesson A, Arbel T. Hierarchical segmentation of normal and lesional structures combining an ensemble of probabilistic local classifiers and regional random forest classification. Ischemic stroke Lesion Segmentation (ISLES) challenge – MICCAI 2015. p. 57–62.
  • Robben D, Christiaens D, Rangarajan JR, et al. A voxel-wise, cascaded classification approach to stroke lesion segmentation. Ischemic Stroke Lesion Segmentation (ISLES) challenge – MICCAI 2015. p. 27–30.
  • Li R, Zhang W, Suk H-I, et al. Deep learning based imaging data completion for improved brain disease diagnosis. MICCAI 2014, part III, LNCS 8675; 2015. p. 305–312.
  • Brosch T, Yoo Y, Tang LYW, et al. Deep convolutional encoder networks for multiple sclerosis lesion segmentation. MICCAI 2015, Part III, LNCS 9351; 2015. p. 3–11.
  • Kamnitsas K, Chen L, Ledig C, et al. Multi-scale 3D convolutional neural networks for lesion segmentation in brain MRI. Ischemic Stroke Lesion Segmentation (ISLES) challenge – MICCAI 2015. p. 13–16.
  • Dutil F, Havaei M, Pal C, et al. A convolutional neural network approach to brain lesion segmentation. Ischemic Stroke Lesion Segmentation (ISLES) challenge – MICCAI 2015. p. 51–56.
  • Bouts MJRJ, Tiebosch IACW, van der Toorn A, et al. Early identification of potentially salvageable tissue with MRI-based predictive algorithms after experimental ischemic stroke. J Cereb Blood Flow Metab. 2013;33:1075–1082. doi: 10.1038/jcbfm.2013.51
  • Maier O, Wilms M, von der Gablentz J, et al. Ischemic stroke lesion segmentation in multi-spectral MR images with support vector machine classifiers. SPIE 9035 Medical Imaging 2014.
  • Murphy K, van der Aa N, Negro S, et al. Automatic segmentation of cerebral ischemic lesions in neonatal apparent diffusion coefficient maps. Brainles 2015 MICCAI Workshop. p. 68–75.
  • Renard F, Urvoy M, Jaillard A. Bayesian stroke lesion estimation for automatic registration of DTI images. Brainles 2015 MICCAI Workshop. p. 76–84.
  • Shen Q, Ren H, Fisher M, et al. Statistical prediction of tissue fate in acute ischemic brain injury. J Cereb Blood Flow Metab. 2007;25:1336–1345. doi: 10.1038/sj.jcbfm.9600126
  • Forbes F, Doyle S, Garcia-Lorenzo D, et al. Adaptive weighted fusion of multiple MR sequences for brain lesion segmentation. IEEE international Symposium on Biomedical Imaging: From Nano to Macro; 2010 Apr 14–17. p. 69–72.
  • Shanthi D, Sahoo G, Saravanan N. Input feature selection using hybrid neuro-genetic approach in the diagnosis of stroke disease. Int J Comput Netw Commun Secur. 2008;8:99–107.
  • Hanna-Leena Halme, Antti Korvenoja, Eero Salli. Segmentation of stroke lesions using spatial normalization, random forest classification and contextual clustering. Ischemic Stroke Lesion Segmentation (ISLES) challenge – MICCAI 2015. p. 31–34.
  • Jerman T, Galimzianova A, Pernuš F, et al. ‘Combining unsupervised and supervised methods for lesion segmentation’. Brainles 2015 MICCAI Workshop. p. 28–35.
  • Silvennoinen HM, Ikonen S, Soinne L, et al. CT angiographic analysis of carotid artery stenosis: comparison of manual assessment, semiautomatic vessel analysis, and digital subtraction angiography. AJNR. 2007;28:97–103. doi: 10.3174/ajnr.A0574
  • Anderson GB, Ashforth R, Steinke DE, et al. CT angiography for the detection and characterization of carotid artery bifurcation disease. Stroke. 2000;31:2168–2174. doi: 10.1161/01.STR.31.9.2168
  • Konstas AA, Wintermark M, Lev MH. CT perfusion imaging in acute stroke. Neuroimag Clin N Am. 2011;21:215–238. doi: 10.1016/j.nic.2011.01.008
  • Lui YW, Tang ER, Allmendinger AM, et al. Evaluation of CT perfusion in the setting of cerebral ischemia: patterns and pitfalls. AJNR. 2010;31:1552–1563. doi: 10.3174/ajnr.A2026
  • Hirano T. Searching for salvageable brain: the detection of ischemic penumbra using various imaging modalities? J Stroke Cerebrovasc Dis. 2014;23:795–798. doi: 10.1016/j.jstrokecerebrovasdis.2013.10.003
  • Promjunyakul N, Lahna D, Kaye JA, et al. Characterizing the white matter hyperintensity penumbra with cerebral blood flow measures. NeuroImage. 2015;8:224–229. doi: 10.1016/j.nicl.2015.04.012
  • Muir K, Buchan A, von Kummer R, et al. Imaging of acute stroke. Lancet Neurol. 2006;5:755–768. doi: 10.1016/S1474-4422(06)70545-2
  • Qian C, Li P-C, Jiao Y, et al. Precise characterization of the penumbra revealed by MRI: a modified photothrombotic stroke model study. PLoS One. 2016;11(4): e0153756.
  • Robertson CA, McCabe C, Lopez-Gonzalez MR, et al. Detection of ischemic penumbra using combined perfusion and T2* oxygen challenge imaging. Int J Stroke. 2015;10:42–50. doi: 10.1111/ijs.12327
  • McLeod DD, Parson MW, Levi CR, et al. Establishing a rodent stroke perfusion computed tomography model. Int J Stroke. 2011;6:284–289. doi: 10.1111/j.1747-4949.2010.00564.x
  • Morris GP, Wright AL, Tan RP, et al. A comparative study of variables influencing ischemic injury in the longa and koizumi methods of intraluminal filament middle cerebral artery occlusion in mice. PloS One. 2016;11:e0148503. doi: 10.1371/journal.pone.0148503
  • Reid E, Graham D, Lopez-Gonzalez MR, et al. Penumbra detection using PWI/DWI mismatch MRI in a rat stroke model with and without comorbidity: comparison of methods. J Cereb Blood Flow Metab. 2012;32:1765–1777. doi: 10.1038/jcbfm.2012.69
  • Baskerville TA, Macrae IM, Holmes WM, et al. The influence of gender on ‘tissue at risk’ in acute stroke: a diffusion-weighted magnetic resonance imaging study in a rat model of focal cerebral ischaemia. J Cereb Blood Flow Meta. 2016;36:381–386. doi: 10.1177/0271678X15606137
  • Foley LM, Hitchens TK, Barbe B, et al. Quantitative temporal profiles of penumbra and infarction during permanent middle cerebral artery occlusion in rats. Transl Stroke Res. 2010;1:220–229. doi: 10.1007/s12975-010-0032-6
  • Shmonin A, Melnikova E, Galagudza M, et al. Characteristics of cerebral ischemia in major rat stroke models of middle cerebral artery ligation through craniectomy. Int J Stroke. 2014;9:793–801. doi: 10.1111/j.1747-4949.2012.00947.x
  • Bang OY, Saver JL, Lee KH, et al. Characteristics of patients with target magnetic resonance mismatch profile: data from two geographically and racially distinct populations. Cerebrovasc Dis. 2010;29:87–94. doi: 10.1159/000256653
  • Wahlgren N, Ahmed N, Davalos A, et al. Thrombolysis with alteplase for acute ischaemic stroke in the safe implementation of thrombolysis in stroke-monitoring study (sits-most): an observational study. Lancet. 2007;369:275–282. doi: 10.1016/S0140-6736(07)60149-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.