306
Views
0
CrossRef citations to date
0
Altmetric
Articles

Efficient disparity estimation from stereo images using hybrid-guided image filter

, , ORCID Icon &
Pages 139-151 | Received 04 May 2017, Accepted 21 Sep 2017, Published online: 28 Oct 2017

References

  • Zhang L-B, Peng F, Long M. Source camera identification based on guided image estimation and block weighted average. In: International workshop on digital watermarking. Beijing: Springer; 2016. p. 106–118.
  • Hu X, Mordohai P. A quantitative evaluation of confidence measures for stereo vision. IEEE T Pattern Anal. Nov 2012;34(11):2121–2133.
  • Szeliski R. Computer vision: algorithms and applications. 1st ed. New York, NY, USA: Springer-Verlag New York, Inc.; 2010.
  • Min D, Lu J, Do MN. Joint histogram-based cost aggregation for stereo matching. IEEE T Pattern Anal. Oct 2013;35(10):2539–2545.
  • Pham CC, Jeon JW. Domain transformation-based efficient cost aggregation for localstereo matching. IEEE T Circ Syst Vid. Jul 2013;23(7):1119–1130. doi: 10.1109/TCSVT.2012.2223794
  • Xu S, Zhang F, He X, et al. Pm-pm: Patchmatch with potts model for object segmentation and stereo matching. IEEE T Image Process. Jul 2015;24(7):2182–2196.
  • Jain AK, Nguyen TQ. Discriminability limits in spatio-temporal stereo block matching. IEEE T Image Process. May 2014;23(5):2328–2342. doi: 10.1109/TIP.2014.2316420
  • Zhou Y, Hou C. Stereo matching based on guided filter and segmentation. Optik-International Journal for Light and Electron Optics. 2015;126(9):1052–1056. doi: 10.1016/j.ijleo.2015.01.030
  • Kou F, Chen W, Wen C, et al. Gradient domain guided image filtering. IEEE T Image Process. Nov 2015;24(11):4528–4539. doi: 10.1109/TIP.2015.2468183
  • Jiao J, Wang R, Wang W, et al. Local stereo matching with improved matching cost and disparity refinement. IEEE MultiMedia. Oct 2014;21(4):16–27. doi: 10.1109/MMUL.2014.51
  • Pham CC, Jeon JW. Domain transformation-based efficient cost aggregation for local stereo matching. IEEE T Circ Syst Vid. Jul 2013;23(7):1119–1130. doi: 10.1109/TCSVT.2012.2223794
  • Kim KR, Kim CS. Adaptive smoothness constraints for efficient stereo matching using texture and edge information. In: 2016 IEEE international conference on image processing (ICIP); Phoenix, Arizona, USA; Sep 2016. p. 3429–3433.
  • Hosni A, Bleyer M, Gelautz M. Secrets of adaptive support weight techniques for local stereo matching. Comput Vis Image Und. 2013;117(6):620–632. doi: 10.1016/j.cviu.2013.01.007
  • Peng Y, Li G, Wang R, et al. Stereo matching with space-constrained cost aggregation and segmentation-based disparity refinement. In: Yi Peng, Ge Li, Ronggang Wang, et al. editors. Three-dimensional image processing, measurement (3DIPM), and applications; San Francisco (CA): SPIE; 2015. p. 939309.
  • Kordelas GA, Alexiadis DS, Daras P, et al. Enhanced disparity estimation in stereo images. Image Vision Comput. 2015;35:31–49. [Online]. Available from: http://www.sciencedirect.com/science/article/pii/S0262885614001851 doi: 10.1016/j.imavis.2014.12.001
  • Chen D, Ardabilian M, Chen L. A fast trilateral filter-based adaptive support weight method for stereo matching. IEEE T Circ Syst Vid. May 2015;25(5):730–743. doi: 10.1109/TCSVT.2014.2361422
  • Yang Q. Stereo matching using tree filtering. IEEE T Pattern Anal. Apr 2015;37(4):834–846. doi: 10.1109/TPAMI.2014.2353642
  • He K, Sun J, Tang X. Guided image filtering. IEEE T Pattern Anal. Jun 2013;35(6):1397–1409. doi: 10.1109/TPAMI.2012.213
  • Yang Q, Li D, Wang L, et al. Full-image guided filtering for fast stereo matching. IEEE Signal Proc Lett. Mar 2013;20(3):237–240. doi: 10.1109/LSP.2013.2241759
  • Li Z, Zheng J, Zhu Z, et al. Weighted guided image filtering. IEEE T Image Process. Jan 2015;24(1):120–129. doi: 10.1109/TIP.2014.2371234
  • Barron JT, Poole B. The fast bilateral solver. ArXiv e-prints. Nov 2015.
  • Zhang S, Xie W, Zhang G, et al. Robust stereo matching with surface normal prediction. In: 2017 IEEE international conference on robotics and automation (ICRA); Singapore; May 2017. p. 2540–2547.
  • Li A, Chen D, Liu Y, et al. Coordinating multiple disparity proposals for stereo computation. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR); Las Vegas, NV, USA; Jun 2016. p. 4022–4030.
  • Xu L, Au OC, Sun W, et al. Stereo matching with optimal local adaptive radiometric compensation. IEEE Signal Proc Lett. Feb 2015;22(2):131–135. doi: 10.1109/LSP.2014.2350028
  • Yoon K-J. Stereo matching based on nonlinear diffusion with disparity-dependent support weights. IET Comput Vis. Jul 2012;6(4):306–313. doi: 10.1049/iet-cvi.2011.0231
  • Nguyen VD, Nguyen DD, Lee SJ, et al. Local density encoding for robust stereo matching. IEEE T Circ Syst Vid. Dec 2014;24(2):2049–2062. doi: 10.1109/TCSVT.2014.2334053
  • Jiao J, Wang R, Wang W, et al. Local stereo matching with improved matching cost and disparity refinement. IEEE MultiMedia. Oct 2014;21(4):16–27. doi: 10.1109/MMUL.2014.51
  • Mouats T, Aouf N, Richardson MA. A novel image representation via local frequency analysis for illumination invariant stereo matching. IEEE T Image Process. Sep 2015;24(9):2685–2700. doi: 10.1109/TIP.2015.2426014
  • Hong GS, Koo MS, Saha A, et al. Efficient local stereo matching technique using weighted guided image filtering (wgif). In: 2016 IEEE international conference on consumer electronics (ICCE); Las Vegas, NV, USA; Jan 2016. p. 484–485.
  • Kordelas GA, Alexiadis DS, Daras P, et al. Content-based guided image filtering, weighted semi-global optimization, and efficient disparity refinement for fast and accurate disparity estimation. IEEE T Multimedia. 2016;18(2):155–170. doi: 10.1109/TMM.2015.2505905
  • Kordelas GA, Alexiadis DS, Daras P, et al. Content-based guided image filtering, weighted semi-global optimization, and efficient disparity refinement for fast and accurate disparity estimation. IEEE T Multimedia. Feb 2016;18(2):155–170. doi: 10.1109/TMM.2015.2505905
  • Cai J. Integration of optical flow and dynamic programming for stereo matching. IET Image Process. Apr 2012;6(3):205–212. doi: 10.1049/iet-ipr.2010.0070
  • Mozerov MG, van de Weijer J. Accurate stereo matching by two-step energy minimization. IEEE T Image Process. Mar 2015;24(3):1153–1163. doi: 10.1109/TIP.2015.2395820
  • Veksler O. Efficient graph-based energy minimization methods in computer vision [Ph.D. dissertation]. Ithaca, NY, USA: 1999, aAI9939932.
  • Klaus A, Sormann M, Karner K. Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. In: Proceedings of the 18th international conference on pattern recognition - Volume 03. ser. ICPR '06. Washington, DC, USA: IEEE Computer Society; 2006. p. 15–18. [Online]. Available from: http://dx.doi.org/10.1109/ICPR.2006.1033
  • Lai YC, Cheng CC, Liang CK, et al. Efficient message reduction algorithm for stereo matching using belief propagation. In: 2010 IEEE international conference on image processing; Hong Kong, China; Sep 2010. p. 2977–2980.
  • Huang J. Stereo matching based on segmented B-spline surface fitting and accelerated region belief propagation. IET Comput Vis. 2015;9(4):456–466. doi: 10.1049/iet-cvi.2014.0166
  • Huq S, Koschan A, Abidi M. Occlusion filling in stereo: theory and experiments. Comput Vis Image Und. 2013;117(6):688–704. doi: 10.1016/j.cviu.2013.01.008
  • He K, Sun J, Tang X. Guided image filtering. IEEE T Pattern Anal. 2013;35(6):1397–1409. doi: 10.1109/TPAMI.2012.213
  • Li G-T, Wang C-L, Huang P-P, et al. Sar image despeckling using a space-domain filter with alterable window. IEEE Geosci Remote S. 2013;10(2):263–267. doi: 10.1109/LGRS.2012.2200875
  • Buades A, Coll B, Morel J-M. A non-local algorithm for image denoising. In: Computer visccession and pattern recognition. 2005. IEEE computer society conference on CVPR 2005. vol. 2. San Diego (CA): IEEE; 2005. p. 60–65.
  • Coupé P, Hellier P, Kervrann C, et al. Bayesian non local means-based speckle filtering. In: Biomedical imaging: from nano to macro, 2008. 5th IEEE international symposium on ISBI 2008. Paris: IEEE; 2008. p. 1291–1294.
  • Zhong H, Li Y, Jiao L. Sar image despeckling using bayesian nonlocal means filter with sigma preselection. IEEE Geosci Remote S. 2011;8(4):809–813. doi: 10.1109/LGRS.2011.2112331
  • Ni W, Gao X. Despeckling of sar image using generalized guided filter with Bayesian nonlocal means. IEEE T Geosci Remote S. 2016;54(1):567–579. doi: 10.1109/TGRS.2015.2462120
  • Lopes A, Touzi R, Nezry E. Adaptive speckle filters and scene heterogeneity. IEEE T Geosci Remote S. 1990;28(6):992–1000. doi: 10.1109/36.62623
  • Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis. IEEE Transact Pattern Anal Mach Intell. May 2002;24(5):603–619. doi: 10.1109/34.1000236
  • Banerjee B, Varma S, Buddhiraju KM, et al. Unsupervised multi-spectral satellite image segmentation combining modified mean-shift and a new minimum spanning tree based clustering technique. IEEE J Sel Topics Appl Earth Observ Remote Sens. Mar 2014;7(3):888–894. doi: 10.1109/JSTARS.2013.2266572
  • Zhong H, Li Y, Jiao L. Bayesian nonlocal means filter for sar image despeckling. In: Synthetic aperture radar. 2009. 2nd Asian-Pacific conference on APSAR 2009. Xian: IEEE; 2009. p. 1096–1099.
  • Geiger A, Roser M, Urtasun R. Efficient large-scale stereo matching. In: Asian Conference on Computer Vision, editor. Computer vision–ACCV 2010. Queenstown: Springer; 2010. p. 25–38.
  • Tang K-L, Tang C-K, Wong T-T. A markov random field approach for dense photometric stereo. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05), vol. 2. San Diego (CA); Jun 2005. p. 1197.
  • Middlebury Stereo Evaluation Dataset - Version 3. Available from: http://vision.middlebury.edu/stereo/data/scenes2014/, accessed: 2017-06-08.
  • Middlebury Stereo Evaluation Dataset - Version 2. Available from: http://vision.middlebury.edu/stereo/data/scenes2003/, accessed: 2017-06-08.
  • Middlebury Homepage. Available from: http://vision.middlebury.edu/stereo/, Accessed: 2017-06-08.
  • Middlebury Stereo Evaluations - Version 2. Available from: http://vision.middlebury.edu/stereo/eval/, accessed: 2017-06-08.
  • Middlebury Stereo Evaluations - Version 3. Available from: http://vision.middlebury.edu/stereo/eval3/, accessed: 2017-06-08.
  • Rutherford A. Introducing ANOVA and ANCOVA: a GLM approach. Sage; 2001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.