362
Views
17
CrossRef citations to date
0
Altmetric
Research Articles

A fully automatic methodology for MRI brain tumour detection and segmentation

ORCID Icon, ORCID Icon & ORCID Icon
Pages 42-62 | Received 29 Jun 2018, Accepted 29 Oct 2018, Published online: 28 Nov 2018

References

  • Wehrl HF, Amend M, Thielcke A. Multimodal imaging and image fusion. Cham: Springer International Publishing; 2017. p. 491–507. Available from: https://doi.org/10.1007/978-3-319-42202-2_17.
  • SonÄŸur C, Top M. Regional clustering of medical imaging technologies. Comput Hum Behav. 2016;61:333–343. Available from: http://www.sciencedirect.com/science/article/pii/S0747563216302278. doi: 10.1016/j.chb.2016.03.056
  • James AP, Dasarathy BV. Medical image fusion: a survey of the state of the art. Inf Fusion. 2014;19:4–19. Special issue on information fusion in medical image computing and systems. Available from: http://www.sciencedirect.com/science/article/pii/S1566253513001450. doi: 10.1016/j.inffus.2013.12.002
  • Karthik R, Menaka R. Computer-aided detection and characterization of stroke lesion a short review on the current state-of-the art methods. Imaging Sci J. 2018;66(1):1–22. Available from: https://doi.org/10.1080/13682199.2017.1370879.
  • Somasundaram K, Kalavathi P. Brain segmentation in magnetic resonance human head scans using multi-seeded region growing. Imaging Sci J. 2014;62(5):273–284. Available from: https://doi.org/10.1179/1743131X13Y.0000000068.
  • Benson C, Lajish V, Rajamani K. A novel skull stripping and enhancement algorithm for the improved brain tumor segmentation using mathematical morphology. Int J Image Graph Signal Process. 2016;8(7):59–66. doi: 10.5815/ijigsp.2016.07.07
  • Kalavathi P, Prasath VBS. Methods on skull stripping of MRI head scan images – a review. J Digit Imaging. 2016;29(3):365–379. Available from: https://doi.org/10.1007/s10278-015-9847-8.
  • Yilmaz B, Durdu A, Emlik GD. A new method for skull stripping in brain MRI using multistable cellular neural networks. Neural Comput Appl. 2018;29(8):79–95. Available from: https://doi.org/10.1007/s00521-016-2834-2.
  • Swiebocka-Wiek J. Skull stripping for MRI images using morphological operators. In: Saeed K, Homenda W, editors. Computer information systems and industrial management; Cham: Springer International Publishing; 2016. p. 172–182
  • Chaddad A, Tanougast C. Quantitative evaluation of robust skull stripping and tumor detection applied to axial mr images. Brain Inform. 2016;3(1):53–61. Available from: https://doi.org/10.1007/s40708-016-0033-7.
  • Subudhi A, Jena J, Sabut S. Extraction of brain from MRI images by skull stripping using histogram partitioning with maximum entropy divergence. 2016 International Conference on Communication and Signal Processing (ICCSP); Melmaruvathur; April; 2016. p. 0931–0935.
  • Chansuparp M, Rodtook A, Rasmequan S, et al. The automated skull stripping of brain magnetic resonance images using the integrated method. 2015 8th Biomedical Engineering International Conference (BMEiCON); Pattaya; Nov; 2015. p. 1–5.
  • Chen YS, Chang HH. Brain extraction based on an improved charged fluid model in MRI. In: Goh J, editor. The 15th International Conference on Biomedical Engineering; Cham: Springer International Publishing; 2014. p. 597–600.
  • Duy NHM, Duy NM, Truong MTN, et al. Accurate brain extraction using active shape model and convolutional neural networks. CoRR. 2018;abs/1802.01268. Available from: http://arxiv.org/abs/1802.01268.
  • Menze BH, Jakab A, Bauer S, et al. The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans Med Imaging. 2015;34(10):1993–2024. doi: 10.1109/TMI.2014.2377694
  • Rao CH, Naganjaneyulu PV, Prasad KS. Brain tumor detection and segmentation using conditional random field. 2017 IEEE 7th International Advance Computing Conference (IACC); Hyderabad; Jan; 2017. p. 807–810.
  • Roy S, Bhattacharyya D, Bandyopadhyay SK, et al. An improved brain mr image binarization method as a preprocessing for abnormality detection and features extraction. Front Comput Sci. 2017;11(4):717–727. Available from: https://doi.org/10.1007/s11704-016-5129-y.
  • Usman K, Rajpoot K. Brain tumor classification from multi-modality mri using wavelets and machine learning. Pattern Anal Appl. 2017;20(3):871–881. Available from: https://doi.org/10.1007/s10044-017-0597-8.
  • Cabria I, Gondra I. Mri segmentation fusion for brain tumor detection. Inf Fusion. 2017;36:1–9. Available from: http://www.sciencedirect.com/science/article/pii/S1566253516301142. doi: 10.1016/j.inffus.2016.10.003
  • Somwanshi D, Kumar A, Sharma P, et al. An efficient brain tumor detection from mri images using entropy measures. 2016 International Conference on Recent Advances and Innovations in Engineering (ICRAIE); Jaipur; Dec; 2016. p. 1–5.
  • Xiao Z, Huang R, Ding Y, et al. A deep learning-based segmentation method for brain tumor in mr images. 2016 IEEE 6th International Conference on Computational Advances in Bio and Medical Sciences (ICCABS); Atlanta; Oct; 2016. p. 1–6.
  • Mohsen H, El-Dahshan ESA, El-Horbaty ESM, et al. Classification using deep learning neural networks for brain tumors. Future Comput Inform J. 2017;3(1):68–71. Available from: http://www.sciencedirect.com/science/article/pii/S2314728817300636. doi: 10.1016/j.fcij.2017.12.001
  • Crimi A, Bakas S, Kuijf H, et al. Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries. In: Third International Workshop, BrainLes 2017, held in conjunction with MICCAI 2017; 2017 September 14; Quebec City, QC; revised selected papers. Vol. 10670. Springer; 2018.
  • Kamnitsas K, Bai W, Ferrante E, et al. Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Crimi A, Bakas S, Kuijf H, et al., editors. Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries; Cham: Springer International Publishing; 2018. p. 450–462.
  • Li Y, Shen L. Deep learning based multimodal brain tumor diagnosis. In: Crimi A, Bakas S, Kuijf H, et al., editors. Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries; Cham: Springer International Publishing; 2018. p. 149–158.
  • Soltaninejad M, Zhang L, Lambrou T, et al. Mri brain tumor segmentation and patient survival prediction using random forests and fully convolutional networks. In: Crimi A, Bakas S, Kuijf H, et al., editors. Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries; Cham: Springer International Publishing; 2018. p. 204–215.
  • Isensee F, Kickingereder P, Wick W, et al. Brain tumor segmentation and radiomics survival prediction: contribution to the brats 2017 challenge. 2017 International MICCAI BraTS Challenge. Cham: Springer; 2017.
  • Litjens G, Kooi T, Bejnordi BE, A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88. doi: 10.1016/j.media.2017.07.005
  • Rafiee J, Rafiee M, Prause N, et al. Wavelet basis functions in biomedical signal processing. Expert Syst Appl. 2011;38(5):6190–6201. Available from: http://www.sciencedirect.com/science/article/pii/S0957417410012881. doi: 10.1016/j.eswa.2010.11.050
  • Agarwal S, Singh OP, Nagaria D. Analysis and comparison of wavelet transforms for denoising mri image. Biomed Pharmacol. 2017;10(2):831–836. doi: 10.13005/bpj/1174
  • Bartušek K, Přinosil J, Smékal Z. Wavelet-based de-noising techniques in mri. Comput Methods Programs Biomed. 2011;104(3):480–488. doi: 10.1016/j.cmpb.2011.08.008
  • Xia Y, Ji Z, Zhang Y. Brain mri image segmentation based on learning local variational Gaussian mixture models. Neurocomputing. 2016;204:189–197. Big Learning in Social Media Analytics. Available from: http://www.sciencedirect.com/science/article/pii/S0925231216300947. doi: 10.1016/j.neucom.2015.08.125
  • Gupta L, Sortrakul T. A Gaussian-mixture-based image segmentation algorithm. Pattern Recognit. 1998;31(3):315–325. Available from: http://www.sciencedirect.com/science/article/pii/S0031320397000459. doi: 10.1016/S0031-3203(97)00045-9
  • Fu ZL, Su YL, Ye M, et al. An adaptive level set method for serial image segmentation. Imaging Sci J. 2012;60(6):321–328. Available from: https://doi.org/10.1179/136821910X12863757400448.
  • Shensa MJ. The discrete wavelet transform: wedding the a trous and Mallat algorithms. IEEE Trans Signal Process. 1992;40(10):2464–2482. doi: 10.1109/78.157290
  • Singh D, Garg D, Pannu HS. Efficient landsat image fusion using fuzzy and stationary discrete wavelet transform. Imaging Sci J. 2017;65(2):108–114. Available from: https://doi.org/10.1080/13682199.2017.1289629.
  • Mekaoui S, Tchoketchkebir S, Ghoumid K. Efficient measurements of the diameter of the human artery using super-resolution imaging technique based on multi-scale wavelet analysis. Modelling in Medicine and Biology X; Vol. 17; Hungary; 2013. p. 145.
  • Arora J, Khatter K, Tushir M. Performance assessment for clustering techniques for image segmentation. Singapore: Springer; 2018. p. 121–129. Available from: https://doi.org/10.1007/978-981-10-6614-6-13.
  • Nguyen TM, Wu QMJ. Online feature selection based on fuzzy clustering and its applications. IEEE Trans Fuzzy Syst. 2016;24(6):1294–1306. doi: 10.1109/TFUZZ.2015.2513091
  • Ngatchou A, Bitjoka L, Mfoumou E, et al. Robust and fast segmentation based on fuzzy clustering combined with unsupervised histogram analysis. IEEE Intell Syst. 2017;32(5):6–13. doi: 10.1109/MIS.2017.3711645
  • Khan JF, Bhuiyan SM. Weighted entropy for segmentation evaluation. Opt Laser Technol. 2014;57:236–242. Available from: http://www.sciencedirect.com/science/article/pii/S0030399213002661. doi: 10.1016/j.optlastec.2013.07.012
  • Guido RC. A tutorial review on entropy-based handcrafted feature extraction for information fusion. Inf Fusion. 2018;41:161–175. Available from: http://www.sciencedirect.com/science/article/pii/S1566253517303846. doi: 10.1016/j.inffus.2017.09.006
  • De A, Bhattacharjee AK, Chanda CK, et al. Mri segmentation using entropy maximization and hybrid particle swarm optimization with wavelet mutation. 2011 World Congress on Information and Communication Technologies; Mumbai; Dec; 2011. p. 362–367.
  • Menze BH, Jakab A, Bauer S, et al. The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans Med Imaging. 2015;34(10):1993–2024. doi: 10.1109/TMI.2014.2377694
  • Reza S, Iftekharuddin K. Improved brain tumor tissue segmentation using texture features. Proceedings MICCAI BraTS (Brain Tumor Segmentation Challenge); 2014. p. 27–30. Available from: https://doi.org/10.1109/TMI.2014.2377694
  • Shaikh M, Anand G, Acharya G, et al. Brain tumor segmentation using dense fully convolutional neural network. International MICCAI Brainlesion Workshop. Cham: Springer; 2017. p. 309–319.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.