122
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Optimal reduction of noise in image processing using collaborative inpainting filtering with Pillar K-Mean clustering

, &
Pages 100-114 | Received 31 Aug 2018, Accepted 14 Dec 2018, Published online: 27 Jan 2019

References

  • Boyat KA, Joshi BK. A review paper: noise model in digital image processing. arXiv Preprint ArXiv. 2015;6(2):1505–03489.
  • Madheswari D, Radha V. Noise removal in compound image using median filter. Int J Comp Sci Eng; 2(4):1359–1362.
  • Verma R, Dr. Ali J. A comparative study of various types of noise and efficient noise removal techniques. Int J Adv Res Comp Sci Eng; 3(10):17–622.
  • Chan RH, Chung-Waho, Nikolova M. Salt and pepper noise removal by median-type noise detectors and detail preserving regularization. IEEE Trans Image Process. 2005;14(10):1479–1485. doi: 10.1109/TIP.2005.852196
  • Toh KK, Isa NAM. Noise adaptive fuzzy switching median filtering for salt and pepper noise reduction. IEEE Signal Process Lett. 2010;17(3):281–284. doi: 10.1109/LSP.2009.2038769
  • Lu C-T, Chou T-C. De-noising of salt and pepper noise corrupted image using modified directional-weight median filter. Pattern Recognit Lett. 2012;33(10):1287–1295. doi: 10.1016/j.patrec.2012.03.025
  • Leavlin JE, Singh DAAG. Salt and pepper noise detection and removal in gray scale images: An experimental analysis. Int J Signal Process Pattern Recogn. 2013;6(5):343–352.
  • Deka B, Choudhury S. A multi-scale detection based adaptive median filter for the removal of salt and pepper noise from highly corrupted images. Int J Signal Process Image Process Pattern Recogn. 2013;6(2):129–144.
  • Roy A, Laskar RH. Non-casual linear prediction based adaptive filter for removal of high density impulse noise from color images. AEU Int J Electron Commun. 2017;72(1):114–124. doi: 10.1016/j.aeue.2016.12.006
  • Zhang X, Xiong Y. Impulse noise removal using directional difference based noise detector and adaptive weighted mean filter. IEEE Signal Process Lett. 2009;16(4):295–298. doi: 10.1109/LSP.2009.2014293
  • Xu G-m, et al. Salt-and-pepper noise removal in polarization optics imaging. AOPC 2017: Optical Sensing and Imaging Technology and Applications, International Society for Optics and Photonics. 2017;10462.
  • Yeh RA, Chen C, Lim TY, et al. Semantic image inpainting with deep generative models. In CVPR. 2017, July;2(3):4.
  • Pan J, Yang X, Cai H, et al. Image noise smoothing using a modified Kalman filter. Neuro Computing. 2016;173(1):1625–1629.
  • Li Z, Trzasko YJD, Lake D, et al. Adaptive nonlocal means filtering based on local noise level for CT de-noising. Med Phys. 2014;411.
  • Han BK, Grant KLR, Garberich R, et al. Assessment of an iterative reconstruction algorithm (SAFIRE) on image quality in pediatric cardiac CT datasets. J Cardiovasc Comput Tomograph. 2012;6(3):200–204. doi: 10.1016/j.jcct.2012.04.008
  • Mredhula L, Dorairangaswamy MA. An effective image de-noising using PPCA and classification of CT image using artificial neural network. Int J Med Eng Inform. 2017;9(1):30–46. doi: 10.1504/IJMEI.2017.080923
  • Varatharajan R, Vasanth K, Gunasekaran M, et al. An adaptive decision making Kriging interpolation algorithm for the removal of high density salt and pepper noise in images. Comp Electr Eng. 2017;15(1):13–28.
  • Guo Y, Xia R, Sengur A, et al. A novel image segmentation approach based on neurotropic c-mean clustering and indeterminacy filtering. Neural Comp Appl. 2017;28(10):3009–3019. doi: 10.1007/s00521-016-2441-2
  • Agarwal S, Singh OP, Nagaria D. Encrypted image de-noising using adaptive weighted median filter. Indian J Sci Technol. 2017;10(18):0974–6846. doi: 10.17485/ijst/2017/v10i18/111973
  • Pavani M, Balaji. An approach for segmentation of medical images using pillar K-mean algorithm. Int Trends Technol. 2015;4(4):636–641.
  • Bharabah RA, Kiyoki Y. A new approach for image segmentation using pillar K-mean algorithm. World Acad Sci Eng Technol. 2009;59(1):23–28.
  • Havei M, Davy A, Warde-Farley D, et al. Brain tumor segmentation with deep neural networks. Med Image Anal. 2017;35(1):18–31. doi: 10.1016/j.media.2016.05.004
  • Isensee F, Kickingereder P, Kamp BD, et al. Brain tumor segmentation field using large receptive field deep convolution neural network. Bildverarbeitungfur die Medizin. 2017;1(1):86–91.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.