142
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Three stage cervical cancer classifier based on hybrid ensemble learning with modified binary PSO using pretrained neural networks

&
Pages 41-55 | Received 21 Jun 2019, Accepted 13 Feb 2020, Published online: 09 Mar 2020

References

  • Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of cancer incidence and mortality for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.
  • Office on Women's Health, U.S. Department of Health and Human Services. (2018). https://www.womenshealth.gov/cancer/cervical-cancer. Accessed 15 January 2019.
  • American Cancer Society, Inc. 2018. Available from: https://www.cancer.org/cancer/cervical-cancer/detection-diagnosis-staging/signs-symptoms.html. Accessed 5 January 2019.
  • Bhatla N, Berek JS, Fredes MC, et al. Revised FIGO staging for carcinoma of the cervix uteri. Int J Gynecol Obstet. 2019;145(1):129–135.
  • Mitra P, Mitra S, Pal SK. Staging of cervical cancer with soft computing. IEEE Trans Biomed Eng. 2000;47(7):934–940.
  • Bora K, Chowdhury M, Mahanta LB, et al. Pap smear image classification using convolutional neural network. Proceedings of the tenth Indian conference on computer vision, graphics and image processing. NY, USA. New York: ACM. 2016. p. 55:1–55:8. DOI:10.1145/3009977.3010068
  • Zhang L, Lu L, Nogues I, et al. Deeppap: deep convolutional networks for cervical cells classification. IEEE J Biomed Health Inform. 2017;21(6):1633–1643.
  • Liang P, Shi W, Zhang X. Remote sensing image classification based on stacked denoising autoencoder. Remote Sens. 2018;10(1):1–12.
  • Gottimukkula VCR. Object classification using stacked autoencoder and convolutional neural network. North Dakota State University; 2016. p. 1–61. Available from: http://hdl.handle.net/10365/25876.
  • Chen S, Liu H, Zeng X, et al. Image classification based on convolutional denoising sparse autoencoders. Mathematical problem in engineering. 2017; Article ID 5218247, 16 pages. DOI:10.1155/2017/5218247.
  • Luo W, Li J, Yang J, et al. Convolutional sparse autoencoders for image classification. IEEE Trans Neural Netw Learn Syst. 2018;29(7):3289–3294.
  • Tang XS, Hao K, Wei H, et al. Using line segments to train multi-stream stacked autoencoders for image classification. Pattern Recognit Lett. 2017;94(C):55–61.
  • Roy SS, Hossain SI, Akhand MAH, et al. A robust system for noisy image classification combining denoising autoencoder and convolutional neural network. Int J Adv Comput Sci Appl. 2018;9(1):224–235.
  • Zhuo J, Ju L, Zhang X. A hybrid learning model based on auto-encoders. 12th IEEE conference on industrial electronics and applications. Siem Reap; 2017. p. 522–528. DOI:10.1109/ICIEA.2017.8282900.
  • Wang X, Liu H. A new input variable selection method for soft sensor based on stacked auto-encoders. 2017 IEEE 56th annual conference on decision and control. 2017. VIC; 2017. p. 3324–3329. DOI:10.1109/CDC.2017.8264147.
  • Arasi MA, El-Horbaty ESM, Salem ABM, et al. Stack auto-encoders approach for malignant melanoma diagnosis in dermoscopy images. Proceedings of the eighth international conference on intelligent computing and information systems. 2017. p. 403–409. DOI:10.1109/INTELCIS.2017.8260079.
  • Fang T. A novel computer-aided lung cancer detection method based on transfer learning from googlenet and median intensity projections. IEEE international conference on computer and communication engineering technology. 2018. p. 286–290.
  • Zhong Z, Jin L, Xie Z. High performance offline handwritten chinese character recognition using googlenet and directional feature maps. 13th International conference on document analysis and recognition. 2015. p. 846–850.
  • Al-qizwini M, Barjasteh I, Al-Qassab H, et al. Deep learning algorithm for autonomous driving using googlenet. IEEE intelligent vehicle symposium. 2017, p. 89–96.
  • Santos R, Murrieta-Flores P, Calado P, et al. Toponym matching through deep neural networks. Int J Geogr Inf Sci. 2018;32(2):324–348. doi: 10.1080/13658816.2017.1390119
  • Almisreb AA, Jamil N, Din MN. Utilizing alexnet deep transfer learning for ear recognition. Proceedings of the 4th international conference on information retrieval and knowledge management. 2018, p. 1–5.
  • Qassim H, Verma A, Feinzimer D. Compressed residual-VGG16 CNN model for big data places image recognition. IEEE 8th annual computing and communication workshop and conference. 2018. p. 169–175.
  • Saim M, Abdel-Razek M, Gamal M, et al. A comparative study of real-time semantic segmentation for autonomous driving. IEEE/CVF conference on computer vision and pattern recognition workshops. 2018. p. 700–710.
  • Carvalho T, De Rezende ERS, Alves MTP, et al. Exposing computer generated images by eye’s region classification via transfer learning of VGG19 CNN. 16th IEEE international conference on machine learning and application. 2017. p. 866–870.
  • Shaha M, Pawar M. Transfer learning for image classification. 2nd International conference on electronics, communication and aerospace technology. 2018. p. 656–660.
  • Wieslander H, Forslid G, Carolina W, et al. Deep convolutional neural networks for detecting cellular changes due to malignancy. IEEE international conference on computer vision workshops. 2017. p. 82–89.
  • Junfei Y, Jingwen L, Bing S, et al. Barrage jamming detection and classification based on convolutional neural network for synthetic aperture radar IEEE international geoscience remote sensing symposium. 2018. p. 4583–4586.
  • Huttner V, Steffens CR, Botelho SSC. First response fire combat: deep leaning based visible fire detection. Latin American robotics symposium and Brazilian symposium on robotics. 2017. p. 1–6.
  • Gupta SK, Ashwin TS, Mohana R, et al. CVUCAMS : computer vision based unobtrusive classroom attendance management system. IEEE 18th international conference on advanced learning technologies. 2018. p. 101–102.
  • Boonyuen K, Kaewprapha P, Srivihok P. Daily rainfall forecast model from satellite image using convolution neural network. International conference on information technology. 2018. p. 1–7.
  • Zhu Z, Zhuo L, Qu P, et al. Extreme weather recognition using convolutional neural networks. IEEE international symposium on multimedia. 2016. p. 621–626.
  • Raschka S, Mirjalili V. Python machine learning. 2nd ed Birmingham: Pact Publishing; 2017.
  • Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. 2015. arXiv preprint. Available from: arXiv:1502.03167.
  • Eiben AE, Schoenauer M. Evolutionary computing. Inf Process Lett. 2002;82(2002):1–6.
  • Zhang Y, Agarwal P, Bhatnagar V, et al. Swarm intelligence and its applications. Scientific World J. 2013;2013; Article ID 528069. 3 pages. doi: 10.1155/2013/528069
  • Eberhart R, Shi Y, Kennedy J. Swarm intelligence. 1st ed. Waltham (MA): Morgan Kaufmann; 2001.
  • Guyon I, Gunn S, Nikravesh M, et al. Feature extraction: foundations and applications (Studies in fuzziness and soft computing). Berlin: Springer-Verlag; 2006.
  • Huang CL, Wang CJ. A GA-based feature selection and parameters optimization for support vector machines. Expert Syst Appl. 2006;31(2):231–240.
  • Marinakis Y, Dounias G, Jantzen J. Pap smear diagnosis using a hybrid intelligent scheme focusing on genetic algorithm-based feature selection and nearest neighbor classification. Comput Biol Med. 2009;39(1):69–78.
  • Vieira SM, Sousa JMC, Runkler TA. Two cooperative ant colonies for feature selection using fuzzy models. Expert Syst Appl. 2010;37(2010):2714–2723.
  • Huang CL. ACO-based hybrid classification system with feature subset selection and model parameters optimization. Neurocomputing. 2009;73(1–3):438–448.
  • Vieira SM, Sousa JMC, Kaymak U. Fuzzy criteria for feature selection. Fuzzy Sets Syst. 2012;189(1):1–18. doi: 10.1016/j.fss.2011.09.009
  • Vieiara SM, Mendonca LF, Farinha GJ, et al. Modified binary PSO for feature selection using SVM applied to mortality prediction of septic patients. Appl Soft Comput. 2013;13(8):3494–3504.
  • Yang XS. Particle swarm optimization. Nature-inspired optimization algorithms. 2014:99–110. DOI:10.1016/b978-0-12-416743-8.00007-5
  • Rodrigues D, Pereira LAM, Almeida TNS, et al. BCS: a binary cuckoo search algorithm for feature selection. IEEE Int Symp Circuits Syst. 2013:465–468. doi: 10.1109/iscas.2013.6571881
  • Prasath R, Kumanan T. Distance-oriented cuckoo search enabled optimal histogram for underwater image enhancement: a novel quality metric analysis. Imaging Sci J. 2019;67(2):76–89. doi: 10.1080/13682199.2018.1552356
  • Nakamura RYM, Pereira LAM, Costa KA, et al. BBA: a binary bat algorithm for feature selection. In: 25th SIBGRAPI Conference on Graphics, Patterns and Images; 2012. p. 291–297. DOI:10.1109/sibgrapi.2012.47
  • Xu H, Yu S, Chen J, et al. An improved firefly algorithm for feature selection in classification. Wirel Pers Commun. 2018;102(4):2823–2834. doi: 10.1007/s11277-018-5309-1
  • Anbu M, Anandha Mala GS. Feature selection using firefly algorithm in software defect prediction. Cluster Comput. 2017:1–10. doi: 10.1007/s10586-017-1235-3
  • Zhang L, Mistry K, Lim CP, et al. Feature selection using firefly optimization for classification and regression models. Decis Support Syst. 2018;106:64–85. doi: 10.1016/j.dss.2017.12.001
  • Taha AM, Mustapha A, Chen SD. Naive bayes-guided bat algorithm for feature selection. Scientific World J. 2013;2013:1–10. doi: 10.1155/2013/325973
  • Tawhid MA, Dsouza KB. Hybrid binary bat enhanced particle swarm optimization algorithm for solving feature selection problems. Appl Comput Inform. 2018. doi: 10.1016/j.aci.2018.04.001
  • Available from: https://scikit-learn.org/stable/modules/ensemble.html#voting-classifier. Accessed 1 February 2019.
  • Breiman L. Bagging predictors. Mach Learn. 1996;24(2):123–140.
  • Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.
  • Zhu J, Zou H, Rosset S, et al. Multi-class adaboost. Stat Interface. 2009;2(3):349–360.
  • Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001;29(5):1189–1232.
  • Schapire RE, Freund Y. Boosting: foundations and algorithms. Cambridge (MA): The MIT Press; 2012.
  • The MathWorks Inc. 2019. Available from: https://in.mathworks.com/help/deeplearning/getting-started-with-deep-learning-toolbox.html. Accessed 30 January 2019.
  • Python Software Foundation. 2019. Available from: https://www.python.org/.
  • Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in python. J Mach Learn Res. 2011;12(Oct):2825–2830.
  • MDE-Lab. 2011. Available from: http://mde-lab.aegean.gr/downloads. Accessed 11 January 2019.
  • Jantzen J, Norup J, Dounias G, et al. Pap-smear benchmark data for pattern classification. Proceedings NiSIS 2005: nature inspired smart information systems (NiSIS), EU co-ordination action. Albufeira, Portugal: NiSIS; 2005. p. 1-9.
  • Byriel J. (1999). Neuro-fuzzy classification of cells in cervical smears. M. Sc Thesis, Denmark.
  • Jantzen J, Dounias G. Analysis of pap-smear image data. Puerto de la Cruz: NISIS; 2006.
  • Standford vision lab. 2016. Available from: http://www.image-net.org/index Accessed on 10 February 2019.
  • Bishop CM. Pattern recognition and machine learning. New York (NY): Springer; 2006.
  • Bora K, Chowdhury M, Mahanta LB, et al. Automated classification of pap smear images to detect cervical dysplasia. Comput Methods Programs Biomed. 2017;138:31–47.
  • Kokkinos Y, Margaritis KG. Breaking ties of plurality voting in ensembles of distributed neural network classifiers using soft max accumulations. In: Iliadis L, Maglogiannis I, Papadopoulos H, editors. Artificial intelligence applications and innovations Vol. 436. Berlin: Springer; 2014. p. 20–28.
  • Bergstra J, Bengio Y. Random search for hyper-parameter optimization. J Mach Learn. 2012;12(2012):281–305.
  • Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. Int Jt Conf Artificial Intell. 1995;14(2):1137–1145.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.