69
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Designing of an optical vortices phase mask and used in the frequency domain of linear canonical transform for double image encryption

ORCID Icon, , , &
Pages 288-304 | Received 12 Dec 2020, Accepted 03 Nov 2022, Published online: 23 Nov 2022

References

  • Nye JF, Berry MV. Dislocations in wave trains. Proc R Soc London Ser A. 1974;336:165–190.
  • Berry MV. Optical vortices evolving from helicoidal integer and fractional phase steps. J Opt A Pure Appl Opt. 2004;6:259–268.
  • Dennis MR, O’Holleran K, Padgett MJ. Singular optics: optical vortices and polarization singularities, chapter 5. Prog Opt. 2009;53:293–363.
  • Barboza R, Bortolozzo U, Clerc M G, et al. Optical vortex induction via light-matter interaction in liquid-crystal media. Adv Opt Photonics. 2015;7:635–683.
  • Plocinniczak L, Popiolek-Masajada A, Masajada J, et al. Analytical model of the optical vortex microscope. App Opt. 2016;55(12):B20–B27.
  • Swartzlander GA Jr. The optical lens, OPN, November, 39-43(2006).
  • Vyas S, Singh RK, Senthilkumaran P. Fractional vortex lens. Opt Laser Technol. 2010;42:878–882.
  • Leach J, Yao E, Padgett MJ. Observation of the vortex structure of a non-integer vortex beam. New J Phys. 2004;6(71):1–8.
  • Preda L. Generation of optical vortices by fractional derivative. Opt Lasers Eng. 2014;54:42–48.
  • Refregier P, Javidi B. Optical image encryption based on input plane and Fourier plane random encoding. Opt Lett. 1995;20:767–769.
  • Matoba O, Nomura T, Perez-Cabre E, et al. Optical techniques for information security. Proc IEEE. 2009;97:1128–1148.
  • Alfalou A, Brosseau C. Optical image compression and encryption methods. Adv Opt Photon. 2009;1(3):589–636.
  • Millan MS, Perez-Cabre E. Optical data encryption, optical and digital image processing: fundamentals and applications, Cristobal G, Schelkens P, Thienpont H, editors., Wiley, Singapore, 739–767; 2011.
  • Javidi B, et al. Roadmap on optical security. J Opt. 2016;18:1–39.
  • Yadav AK, Vashisth S, Singh H, et al. Optical cryptography and watermarking using some Fractional canonical transforms, and structured masks, Advances in optical and Engg.: Proc. IEM Optronix 2014, Springer, 25-36 (2015).
  • Nishchal NK. Optical cryptosystems. Bristol, UK: IOP Publishing; 2019. doi:10.1088/978-0-7503-2220-1. https://iopscience.iop.org/book/978-0-7503-2220-1
  • Kumar P, Joseph J, Singh K. Double random phase encoding based optical encryption systems using some linear canonical transforms: weaknesses and countermeasures. In: JJ Healy, MA Kutay, HM Ozaktas, etal, editors. Linear Canonical Transforms, Springer series in optical sciences, New York, NY, 198; 2016. p. 367–396. https://doi.org/10.1007/978-1-4939-3028-9_13
  • Unnikrishnan G, Joseph J, Singh K. Optical encryption by double-random phase encoding in the fractional Fourier domain. Opt Lett. 2000;25:887–889.
  • Dahiya M, Sukhija S, Singh H. Image encryption using quad masks in fractional Fourier domain and case study. IEEE International Advance Computing Conference (IACC). 2014:1048–1053. https://doi.org/10.1109/IAdCC.2014.6779470
  • Matoba O, Javidi B. Encrypted optical memory system using three-dimensional keys in the Fresnel domain. Opt Lett. 1999;24:762–764.
  • Situ G, Zhang J. Double random-phase encoding in the Fresnel domain. Opt Lett. 2004;49:1584–1586.
  • Singh H, Yadav AK, Vashisth S, et al. Optical image encryption using devil’s vortex toroidal lens in the Fresnel transform domain. Int J Opt. 2015;2015:Article ID. 926135, 1–13.
  • Rodrigo JA, Alieva T, Calvo ML. Gyrator transform: properties and applications. Opt Express. 2007;15:2190–2203.
  • Singh H, Yadav AK, Vashisth S, et al. Fully-phase image encryption using double random-structured phase masks in gyrator domain. Appl Opt. 2014;53:6472–6481.
  • Singh H, Yadav AK, Vashisth S, et al. Double phase-image encryption using gyrator transforms, and structured phase mask in the frequency plane. Opt Lasers Eng. 2015;67:145–156.
  • Sui L, Xu M, Tian A. Optical noise-free image encryption based on quick response code and high dimension chaotic system in gyrator transform domain. Opt Lasers Eng. 2017;92:106–114.
  • Anshula, Singh H. Security enrichment of an asymmetric optical image encryption-based devil’s vortex fresnel lens phase mask and lower upper decomposition with partial pivoting in gyrator transform domain. Opt Quantum Electron. 2021;53(204):1–23. https://doi.org/10.1007/s11082-021-02854-7
  • Anshula, Singh H. Cryptanalysis for double-image encryption using the DTLM in frequency plane with QR decomposition and gyrator transform. Opt Rev. 2021;28:596–610. https://doi.org/10.1007/s10043-021-00705-0
  • Khurana M, Singh H. A spiral-phase rear mounted triple masking for secure optical image encryption based on gyrator transform. Recent Patents Comput Sci. 2019;12(2):80–84.
  • Singh H. Devil’s vortex Fresnel lens phase masks on an asymmetric cryptosystem based on phase-truncated in gyrator wavelet transform. Opt Lasers Eng. 2016;81:125–139.
  • Zhou NR, Wang Y, Gong L. Novel optical image encryption scheme based on fractional Mellin transform. Opt Commun. 2011;284:3234–3242.
  • Vashisth S, Singh H, Yadav AK, et al. Devil’s vortex phase structure as frequency plane mask for image encryption using the fractional Mellin transform. Int J Opt. 2014;2014:1–9. Art. ID 728056
  • Singh H. Cryptosystem for securing image encryption using structured phase masks in Fresnel wavelet transform domain. 3D Res. 2016;3, 34:1–18. https://doi.org/10.1007/s13319-016-0110-y
  • Abd-El-Atty B, Iliyasu AM, Alanezi A, et al. Optical image encryption based on quantum walks. Opt Lasers Eng. 2021;138:106403. https://doi.org/10.1016/j.optlaseng.2020.106403
  • Abd El-Latif AA, Abd-El-Atty B, Belazi A, et al. Efficient chaos-based substitution-Box and Its application to image encryption. Electronics. 2021;10(12):1–19. https://doi.org/10.3390/electronics10121392
  • Zhao L, Healy JJ, Sheridan JT. Unitary discrete linear canonical transform: analysis and application. Appl Opt. 2013;52(7):C30–C36.
  • Zhao L, Healy JJ, Sheridan JT. Two-dimensional non separable linear canonical transform: sampling theorem and unitary discretization. J Opt Soc Am A. 2014;31(12):2632–2641.
  • Wu J, Liu W, Liu Z, et al. Correlated-imaging-based chosen plaintext attack on general cryptosystems composed of linear canonical transforms and phase encodings. Opt Commun. 2015;338:164–167.
  • Zhao L, Healy JJ, Sheridan JT. Constraints on additivity of the 1D discrete linear canonical transform. Appl Opt. 2015;54:9960–9965.
  • Hennelly BM, Sheridan JT. Fast numerical algorithm for the linear canonical transform. J Opt Soc Am A. 2005;22:928–937.
  • Wei D, Wang R, Li Y. Random discrete linear canonical transform. J Opt Soc Am A. 2016;33:2470–2476.
  • Guo C, Sheridan JT, Muniraj I. Phase retrieval-based attacks on linear canonical transform based DRPE systems. Appl Opt. 2016;55:4720–4728.
  • Pei S-C, Huang S-G. Two-dimensional non separable discrete linear canonical transform based on CM-CC-CM-CC decomposition. J Opt Soc A. 2016;33:214–217.
  • Zhao L, Muniraj I, Healy JJ, et al. 2D Non-separable Linear Canonical transform (2D-NS-LCT) based cryptography. Proc SPIE. 2017;10233:102331B-1/8. https://doi.org/10.1117/12.2265863
  • Healy JJ. Simulating first order optical systems-algorithms for and composition of discrete linear canonical transforms. J Opt. 2018;20(1):014008. https://doi.org/10.1088/2040-8986/aa9e20
  • Huang ZJ, Cheng S, Gong LH, et al. Nonlinear optical multi-image encryption scheme with two-dimensional linear canonical transform. Opt Lasers Eng. 2019;124:105821. https://doi.org/10.1016/j.optlaseng.2019.105821
  • Kumar R, Sheridan JT, Bhaduri B. Nonlinear double image encryption using 2D non-separable linear canonical transform and phase retrieval algorithm. Opt Lasers Technol. 2019;107:353–360.
  • Rakheja P, Vig R, Singh P. Double image encryption using 3D Lorenz chaotic system, 2D non-separable linear canonical transform and QR decomposition. Opt Quant Electronics. 2020;52:103. https://doi.org/10.1007/s11082-020-2219-8
  • Sangwan A, Singh H. A secure asymmetric optical image encryption based on phase truncation and singular value decomposition in linear canonical transform domain. Int J Opt. 2021;2021:1–17:Article ID 5510125. https://doi.org/10.1155/2021/5510125
  • Unnikrishnan G, Singh K. Optical encryption using quadratic phase systems. Opt Commun. 2001;193:51–57.
  • Singh H. Nonlinear optical double image encryption using random vortex in fractional Hartley transform domain. Opt Appl. 2017;47(4):557–568.
  • Singh H, Khurana M. An asymmetric optical cryptosystem of double image encryption based on optical vortex phase mask using gyrator transform domain. Recent Adv Comput Sci Commun. 2020;13:672–685.
  • Yadav S, Singh H. Unsymmetric image encryption using lower-upper decomposition and structured phase mask in the fractional Fourier domain. Recent Adv Comput Sci Commun. 2021;14(8):2691–2704.
  • Yadav S, Singh H. Image enhancement using hybrid Fresnel phase mask, hybrid mask and singular value decomposition in affine and Fresnel transform domain. Recent Adv Comput Sci Commun. 2021;14(6):1984–1998.
  • Girija R, Singh H. Triple-level cryptosystem using deterministic masks and modified Gerchberg-Saxton iterative algorithm in fractional Hartley domain by positioning singular value decomposition. Optik (Stuttg). 2019;187:238–257.
  • Girija R, Singh H. An asymmetric cryptosystem based on the random weighted singular value decomposition and fractional Hartley domain. Multimed Tools Appl. 2019;78:1–19.
  • Girija R, Anshula, Singh H. Security-enhanced optical nonlinear cryptosystem based on modified Gerchberg- Saxton iterative algorithm. Optik (Stuttg). 2021;244:167568. https://doi.org/10.1016/j.ijleo.2021.167568
  • Yadav S, Singh H. Improving security by utilizing hybrid deterministic phase mask and orthogonal encoding. Multidim Syst Sign Process. 2022;33:99–120. https://doi.org/10.1007/s11045-021-00788-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.