210
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

POT-Net: solanum tuberosum (Potato) leaves diseases classification using an optimized deep convolutional neural network

, , , , , & show all
Pages 387-403 | Received 25 May 2022, Accepted 13 Jan 2023, Published online: 29 Jan 2023

References

  • Beals KA. Potatoes, nutrition and health. Am J Potato Res 2019;96:102–110. doi:10.1007/s12230-018-09705-4.
  • Navarre DA, Brown CR, Sathuvalli VR. Potato vitamins, minerals and phytonutrients from a plant biology perspective. Am J Potato Res. 2019;96(2):111–126. doi:10.1007/s12230-018-09703-6.
  • STATISTA. India: production volume of potato 2021, (n.d.). https://www.statista.com/statistics/1038959/india-production-of-potato/.
  • Oyesola OL, Aworunse OS, Oniha MI, et al. Impact and Management of Diseases of Solanum tuberosum, in: Solanum Tuberosum - A Promis. Crop Starvation Probl., IntechOpen, 2021. doi:10.5772/intechopen.98899.
  • Fang Y, Ramasamy R. Current and prospective methods for plant disease detection. Biosensors. 2015;5:537. doi:10.3390/bios5030537.
  • Hariharan G, Prasannath K. Recent advances in molecular diagnostics of fungal plant pathogens: a mini review. Front Cell Infect Microbiol. 2021;10:829. doi:10.3389/FCIMB.2020.600234/BIBTEX.
  • Minar MR, Naher J. Recent Advances in Deep Learning: An Overview, 2018. doi:10.13140/RG.2.2.24831.10403.
  • Annabel LSP, Annapoorani T, Deepalakshmi P. Machine Learning for Plant Leaf Disease Detection and Classification–A Review, In: 2019 Int. Conf. Commun. Signal Process., IEEE, 2019: pp. 538–542.
  • Hou C, Zhuang J, Tang Y, et al. Recognition of early blight and late blight diseases on potato leaves based on graph cut segmentation. J Agric Food Res. 2021;5:100154.
  • Chakraborty KK, Mukherjee R, Chakroborty C, et al. Automated recognition of optical image based potato leaf blight diseases using deep learning. Physiol Mol Plant Pathol. 2022;117:101781.
  • Ghosh S, Rameshan R, Dinesh D. An Empirical Study on Machine Learning Models for Potato Leaf Disease Classification using RGB Images., in: ICPRAM, 2021: pp. 515–522.
  • Tan L, Lu J, Jiang H. Tomato leaf diseases classification based on leaf images: a comparison between classical machine learning and deep learning methods. AgriEngineering. 2021;3:542–558.
  • Prakash RM, Saraswathy GP, Ramalakshmi G, et al. Detection of leaf diseases and classification using digital image processing, In: 2017 Int. Conf. Innov. Information, Embed. Commun. Syst., IEEE, 2017: pp. 1–4.
  • Islam M, Dinh A, Wahid K, et al. Detection of potato diseases using image segmentation and multiclass support vector machine, in: 2017 IEEE 30th Can. Conf. Electr. Comput. Eng., IEEE, 2017: pp. 1–4.
  • Mohan L, Pant J, Suyal P, et al. Support vector machine accuracy improvement with classification, In: 2020 12th Int. Conf. Comput. Intell. Commun. Networks, IEEE, 2020: pp. 477–481.
  • Andrushia AD, Patricia AT. Artificial bee colony optimization (ABC) for grape leaves disease detection. Evol Syst. 2020;11:105–117.
  • Iqbal MA, Talukder KH. Detection of potato disease using image segmentation and machine learning, In: 2020 Int. Conf. Wirel. Commun. Signal Process. Netw., IEEE, 2020: pp. 43–47.
  • Mahum R, Munir H, Mughal Z-U-N, et al. A novel framework for potato leaf disease detection using an efficient deep learning model. Hum Ecol Risk Assess An Int J. 2022: 1–24.
  • Wongbongkotpaisan J, Phumeechanya S. Plant Leaf Disease Classification using Local-Based Image Augmentation and Convolutional Neural Network, In: 2021 18th Int. Conf. Electr. Eng. Comput. Telecommun. Inf. Technol., IEEE, 2021: pp. 1023–1027.
  • Sholihati RA, Sulistijono IA, Risnumawan A, et al. Potato Leaf Disease Classification Using Deep Learning Approach, In: 2020 Int. Electron. Symp., IEEE, 2020: pp. 392–397.
  • Deepa NR, Nagarajan N. Kuan noise filter with Hough transformation based reweighted linear program boost classification for plant leaf disease detection. J Ambient Intell Humaniz Comput. 2021;12:5979–5992.
  • Darwish A, Ezzat D, Hassanien AE. An optimized model based on convolutional neural networks and orthogonal learning particle swarm optimization algorithm for plant diseases diagnosis. Swarm Evol Comput. 2020;52:100616.
  • Alzubaidi L, Zhang J, Humaidi AJ, et al. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J Big Data. 2021;8:1–74.
  • Mirjalili S, Lewis A. The whale optimization algorithm. Adv Eng Softw. 2016;95:51–67.
  • Lavaee A. PlantifyDr Dataset | Kaggle, (n.d.). https://www.kaggle.com/lavaman151/plantifydr-dataset.
  • Agarap AF. Deep learning using rectified linear units (relu), ArXiv Prepr. ArXiv1803.08375. (2018).
  • Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift, In: Int. Conf. Mach. Learn., PMLR, 2015: pp. 448–456.
  • Wu Y, Li J, Kong Y, et al. Deep convolutional neural network with independent softmax for large scale face recognition, In: Proc. 24th ACM Int. Conf. Multimed., 2016: pp. 1063–1067.
  • Malar BA, Andrushia AD, Neebha TM. Deep Learning based Disease Detection in Tomatoes, In: 2021 3rd Int. Conf. Signal Process. Commun., IEEE, 2021: pp. 388–392.
  • Mohamad R, Harun H. Enhancement of cross-entropy based stopping criteria via turning point indicator, In: 2017 7th Int. Conf. Model. Simulation, Appl. Optim., IEEE, 2017: pp. 1–5.
  • Yang X-S. Metaheuristic optimization: algorithm analysis and open problems, in: Int. Symp. Exp. Algorithms, Springer. 2011: 21–32. doi:10.1007/978-3-642-20662-7_2.
  • Unnikrishnan A, Sowmya V, Soman KP. Deep AlexNet with reduced number of trainable parameters for satellite image classification. Procedia Comput Sci. 2018;143:931–938.
  • Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks. in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 2017: 4700–4708.
  • He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 2016: 770–778.
  • Michele A, Colin V, Santika DD. Mobilenet convolutional neural networks and support vector machines for palmprint recognition. Procedia Comput Sci. 2019;157:110–117. doi:10.1016/j.procs.2019.08.147.
  • Zhang X, Zhou X, Lin M, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices. in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 2018: 6848–6856.
  • Ebenezer AS, Kanmani SD, Sivakumar M, et al. Effect of image transformation on EfficientNet model for COVID-19 CT image classification, Mater. Today Proc. 2021.
  • Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition, ArXiv Prepr. ArXiv1409.1556. (2014).
  • Canayaz M. MH-COVIDNet: Diagnosis of COVID-19 using deep neural networks and meta-heuristic-based feature selection on X-ray images. Biomed Signal Process Control. 2021;64:102257.
  • Li S, Chen H, Wang M, et al. Slime mould algorithm: A new method for stochastic optimization. Futur Gener Comput Syst. 2020;111:300–323.
  • Herliana A, Arifin T, Susanti S, et al. Feature Selection of Diabetic Retinopathy Disease Using Particle Swarm Optimization and Neural Network, 2018 6th Int. Conf. Cyber IT Serv. Manag. CITSM 2018. (2019) 2016–2019. doi:10.1109/CITSM.2018.8674295.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.