1,004
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Review of CNN in aerial image processing

, , &
Pages 1-13 | Received 16 Nov 2019, Accepted 26 Jan 2023, Published online: 13 Feb 2023

References

  • Wuttichai B, Yumin T, Yinghua Y, et al. A deep learning approach on building detection from unmanned aerial vehicle-based images in riverbank monitoring. Sensors. 2018;18(11):3921–3933.
  • Zhengxia Z, Zhenwei S. Random access memories: a new paradigm for target detection in high resolution aerial remote sensing images. IEEE Trans Image Proc. 2018;27(3):1100–1111.
  • Griffiths D, Boehm J. Rapid object detection systems, utilising deep learning and unmanned aerial systems (UAS) for civil engineering applications. ISPRS TC II Mid-term Sym, Riva del Garda, Italy, Proceedings of ISPRS 2018; 2018, 391–398.
  • Kasthurirangan G, Hoda G, Akash V, et al. Crack damage detection in unmanned aerial vehicle images of civil infrastructure using pre-trained deep learning model. Int J Traffic Trans Eng. 2018;8(1):1–14.
  • Diogo D, Francesco N, Norman K, et al. Multi-resolution feature fusion for image classification of building damages with convolutional neural networks. Rem Sens. 2018;10(10):1636–1661.
  • Dimitrios M, Mihai D, Thomas E, et al. Deep learning earth observation classification using ImageNet pretrained networks. IEEE Geosci Rem Sens Let. 2016;13(1):105–109.
  • Xiangtao Z, Yuan Y, Lu X. A deep scene representation for aerial scene classification. IEEE Trans: Geosci Rem Sens. 2019;57(7):4799–4809.
  • Lillesand TM, Kiefer RW, Chipman J. Remote sensing and image interpretation. New York (NY): Wiley; 2008.
  • Shaw G, Manolakis D. Signal processing for hyperspectral image exploitation. IEEE Sig Proc Mag. 2002;19(1):12–16.
  • Ishimwe R, Abutaleb K, Ahmed F. Applications of thermal imaging in agriculture – A review. Adv in Rem Sens. 2014;3(2014):128–140.
  • Fedra T, Andres F, Carlos S, et al. Corn classification using deep learning with UAV imagery. An operational proof of concept. IEEE 1st ColCACI, IEEE, Medellin, Colombia, 2018.
  • Mohammad R, Yun Z, Rakesh M, et al. Using a VGG-16 network for individual tree species detection with an object-based approach. 10th IAPR Work. Pat. Rec. in Rem. Sensg (PRRS), IEEE, Beijing, China, 2018.
  • Calhoon S, Conwell W Y. Image processing methods and arrangements, Google Patents, USA (2018).
  • Saxena L, Armstrong L. A survey of image processing techniques for agriculture. Proceedings of AFITA; Perth, Australia, 405–418, 2014.
  • Arti S, Baskar G, et al. Machine learning for high-throughput stress phenotyping in plants. Tre Plant Sci. 2016;21(2):110–124.
  • Alfatni MSM, Shariff ARM, Shafri HZM, et al. Oil palm fruit bunch grading system using red, green and blue digital number. J App Sci. 2008;8(8):1444–1452.
  • Chen C, Baochang Z, et al. Land-use scene classification using multi-scale completed local binary patterns. Sig ima vid Proc. 2016;10(4):745–752.
  • Kamusoko Courage. Importance of remote sensing and land change modeling for urbanization studies. Urban development in Asia and Africa. Singapore: Springer; 2017. p. 3–10.
  • Kerkech M, Hafiane A, Canals R. Deep leaning approach with colorimetric spaces and vegetation indices for vine diseases detection in UAV images. Comp Electr Agric. 2018;155:237–243.
  • Nair V, Hinton GE. Rectified linear units improve restricted Boltzmann machines. Proceedings of International Conference on Mac. Lear (ICML-10); Haifa, Israel, 807–814, 2010.
  • White AR. Human expertise in the interpretation of remote sensing data: A cognitive task analysis of forest disturbance attribution. Int J App Ear Obser Geoinformation. 2019;74:37–44.
  • Hassan M, Golam R AM, Uddin M Z, et al. Human emotion recognition using deep belief network architecture. Infor Fusion. 2019;51:10–18.
  • Rig D, Emanuela P, Emanuele M, et al. Convolutional neural network for finger-vein-based biometric identification. IEEE Trans Infor Forensic Sec. 2019;14(2):360–373.
  • Calvo-Zaragoza J, Gallego A. A selectional auto-encoder approach for document image binarization. Com Ver Pattern Rec. 2019;86:37–47.
  • He K, Xiangyu Z, Shaoqing R, et al. Deep residual learning for image recognition. IEEE Conference on Computer Vision Pattern Recognition (CVPR), Las Vegas, NV, USA, 770–778, 2016.
  • Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition, arXiv preprint, arXiv:1409.1556 (2014).
  • Wenlu Z, Rongjian L, Tao Z, et al. Deep model based transfer and multi-task learning for biological image analysis. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1475–1484, 2015.
  • Weixun Z, Zhenfeng S, Chunyuan D, et al. High-resolution remote-sensing imagery retrieval using sparse features by auto-encoder. Rem. Sens Lett. 2015;6(10):775–783.
  • Agostinelli F, Hoffman M, Sadowski P, et al. Learning activation functions to improve deep neural networks, arXiv preprint, arXiv:1412.6830, 2014.
  • Metin NG, Heang-Ping C. Optimal neural network architecture selection: improvement in computerized detection of microcalcifications. Acad Radiol. 2002;9(4):420–429.
  • Krizhevsky A, Sutskever I, Hinton G. Imagenet classification with deep convolutional neural networks. Advances in Neural information Processing System; Lake Tahoe, Nevada, 1097–1105, 2012.
  • Kaiming H, Xiangyu Z, Shaoqing R, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. Proceedings of IEEE International Conference on Computer Vision; Santiago, Chile , 1026–1034, 2015.
  • Hilal E, Yusuf C A, Mustafa S, et al. Early and late level fusion of deep convolutional neural networks for visual concept recognition. Int J Sema Comp. 2016;10(3):347–363.
  • Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86(11):2278–2324.
  • Deng J, Dong W, Socher R. Imagenet: a large-scale hierarchical image database. IEEE Conference on Computer Vision Pattern Recognition; New York, IEEE Press, 248–255, 2009.
  • Bengio Y, Simard P, Frasconi P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans Neu Net. 1994;5(2):157–166.
  • Szegedy C, Wei L, Yangqing J, et al. Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1–9, 2015.
  • Min L, Chen Q, Yan S. Network in network, arXiv preprint, arXiv, 2013. 1312.4400.
  • Tayara H, Chong KT. Object detection in very high-resolution aerial images using one-stage densely connected feature pyramid network. Sens. 2018;18(10):3341–3358.
  • Gong C, Ceyuan Y, Xiwen Y, et al. When deep learning meets metric learning: remote sensing image scene classification via learning discriminative CNNs. IEEE Trans Geosci Rem Sens. 2018;56(5):2811–2821.
  • Marco C, Giovanni P, Carlo S, et al. Land use classification in remote sensing images by convolutional neural networks, arXiv preprint, arXiv:1508.00092 (2015).
  • Guofeng S, Wen Y, Tao X, et al. High-resolution satellite scene classification using a sparse coding based multiple feature combination. Int J Rem Sens. 2012;33(8):2395–2412.
  • Gong C, Junwei H, Xiaoqiang L. Remote sensing image scene classification: benchmark and state of the art. Proc IEEE. 2017;105(10):1865–1883.
  • GuiSong X, Jingwen H, et al. AID: a benchmark data set for performance evaluation of aerial scene classification. IEEE Trans Geosci Rem Sens Let. 2017;55(7):3965–3981.
  • Gong C, Junwei H, Peicheng Z, et al. Multi-class geospatial object detection and geographic image classification based on collection of part detectors. ISPRS J Photog Rem Sens Let. 2014;98:119–132.
  • Razakarivonyb S, Jurie F. Vehicle detection in aerial imagery: a small target detection benchmark. J Vis Commu Ima Rep. 2016;34:187–203.
  • Franklin T, Brian C, Craig P, et al. Overhead imagery research data set – an annotated data library & tools to aid in the development of computer vision algorithms. AIPR 2009, DC: Washington IEEE, 2010.
  • Rottensteiner F, Sohn G, Jung J, et al. The ISPRS benchmark on urban object classification and 3D building reconstruction. ISPRS Anna Photog, Rem Sens Spa Infor Sci. 2012;1(3):293–298.
  • Kang L, Gellert M. Fast multiclass vehicle detection on aerial images. IEEE Geosci Rem Sens Let. 2015;12(9):1938–1942.
  • Mnih V. Machine learning for aerial image labeling. University of Toronto (Canada); 2013.
  • Kemker R, Salvaggio C, Kanan C. Algorithms for semantic segmentation of multispectral remote sensing imagery using deep learning. ISPRS J Photog Re Sens Let. 2018;145:60–77.
  • Volpi M, Tuia D. Deep multi-task learning for a geographically-regularized semantic segmentation of aerial images. ISPRS J Photog Rem Sens Let. 2018;144:48–60.
  • Jinwang W, Wei G, Pan T, et al.: Bottle detection in the wild using low-altitude unmanned aerial vehicles. International Confer. Infor. Fusion (FUSION), Cambridge, UK: IEEE, 2018.
  • Jiandan Z, Tao L, Guangle Y. Robust vehicle detection in aerial images based on cascaded convolutional neural networks. Sens. 2017;17(12):2720–2737.
  • Ying S, Xinchang Z, Silvano G, et al. Developing a multi-filter convolutional neural network for semantic segmentation using high-resolution aerial imagery and LiDAR data. ISPRS J Photog Rem Sens Let. 2018;143:3–14.
  • Marmanis D, Wegner JD, et al. Semantic segmentation of aerial images with an ensemble of CNNs. ISPRS Ann photog. Rem Sens Spa Infor Sci. 2016;3:473–480.
  • Qi C, Lei W, Yifan W, et al. Aerial imagery for roof segmentation: a large-scale dataset towards automatic mapping of buildings. ISPRS J Photog Rem Sens Let. 2019;147:42–55.
  • Xiang L, Xiaojing Y, Yi F. Building-a-nets: robust building extraction from high-resolution remote sensing images with adversarial networks. IEEE J Sel Top App Earth Obs Rem Sens Let. 2018;11(10):3680–3687.
  • Lichao M, Xiaoxiang Z. Vehicle instance segmentation from aerial image and video using a multi-task learning residual fully convolutional network. IEEE Trans Geosci Rem Sens. 2018;56(11):6699–6711.
  • Hani A, Eduard T, et al. Learning to match aerial images with deep attentive architectures. IEEE Conference Computer Vision Pattern Recognition (CVPR), 3539–3547, 2016.
  • Ruihua W, Xionwu X, Bingxuan G, et al. An effective image denoising method for UAV images via improved generative adversarial networks. Sens. 2018;18(7):1985–2007.
  • Benjamin K, Diego M, Devis T. Detecting mammals in UAV images: best practices to address a substantially imbalanced dataset with deep learning. Rem Sens Enviro. 2018;216:139–153.
  • Yang L, Peng S, Highsmith M R, et al. Performance comparison of deep learning techniques for recognizing birds in aerial images. IEEE Third International Conference on DSC; Guangzhou, China, 317–324, 2018.
  • Amin F, Mohammad E, Babak M. A deep residual neural network for low altitude remote sensing image classification. Ira. Joi. CFIS, IEEE, Kerman, Iran, 2018.
  • Wei H, Ruyi F, Lizhe W, et al. A semi-supervised generative framework with deep learning features for high-resolution remote sensing image scene classification. ISPRS J: Photog Rem Sens Let. 2018;145:23–43.
  • Otavio AP, Keiller N, Jefersson AdS, et al. Do deep features generalize from everyday objects to remote sensing and aerial scenes domains. IEEE Conference Computer Vision Pattern Recognition (CVPR) Workshops, 44–51, 2015.
  • Fan H, GuiSong X, Jingwen H, et al. Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Rem Sens. 2015;7(11):14680–14707.
  • Barak O, Annie H, et al. Infrastructure quality assessment in Africa using Satellite Imagery and Deep Learning, arXiv preprint, arXiv:.00894 (2018).
  • Vysakh SM, Sowmya V, Soman KP. Deep neural networks as feature extractors for classification of vehicles in aerial imagery. International Conference on SPIN, Noida, India, 105–110, 2018.
  • Makantasis K, Karantzalos K, Anastasios D, et al. Deep supervised learning for hyperspectral data classification through convolutional neural networks. IEEE IGARSS; Milan, Italy, 4959–4962, 2015.
  • Yuhao C, Javier R, Edward JD. Estimating plant centers using a deep binary classifier. IEEE SSIAI, Las Vegas, NV, USA, IEEE, 2018
  • Rui C, Jiasong Z, Wei T, et al. Integrating aerial and street view images for urban land use classification. Rem Sens. 2018;10(10):1553–1575.
  • Adriana R, Carlo G, Gustau CV. Unsupervised deep feature extraction for remote sensing image classification. IEEE Trans Geosci Rem Sens. 2016;54(3):1349–1362.
  • Jasper R U, Koen EA, Van DS, et al. Selective search for object recognition. Int J Comp Vis. 2013;104(2):154–171.
  • Joseph R, Santosh D, Ross G, et al. You only look once: unified, real-time object detection. Proceedings of IEEE Conference on CVPR, 779–788, 2016.
  • Shaoqing R, Kaiming H, Ross G, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pat Anal & Mac Int. 2017;39(6):1137–1149.
  • Mahyar N, Pouya S, Rama C, et al. Ssh: single stage headless face detector. IEEE ICCV, 4875–4884, 2017.
  • Xiaohong W, Abhinav S, and Abhinav G. A-fast-rcnn: hard positive generation via adversary for object detection. Proceedings of IEEE Conference on Computer Vision Pattern Recognition, 2606–2615, 2017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.