99
Views
0
CrossRef citations to date
0
Altmetric
Articles

Colour-weighted rank transform and improved dynamic programming for fast and accurate stereo matching

, , , & ORCID Icon
Pages 238-253 | Received 10 Oct 2022, Accepted 05 Apr 2023, Published online: 23 Apr 2023

References

  • Hamzah RA, Ibrahim H. Literature survey on stereo vision disparity map algorithms. J Sens. 2016;2016:1–23.
  • Barnes C, Zhang FL. A survey of the state-of-the-art in patch-based synthesis. Comput Vis Media. 2017;3(1):3–20.
  • Einecke N, Eggert J. A two-stage correlation method for stereoscopic depth estimation. 2010 International Conference on Digital Image Computing: Techniques and Applications, Sydney, NSW, Australia, 2010. p. 227–234. Sydney, NSW, Australia: IEEE.
  • Lu H, Xu H, Zhang L, et al. Cascaded multi-scale and multi-dimension convolutional neural network for stereo matching. IEEE visual Communications and Image Processing (VCIP). 2018. p. 1–4
  • Hirschmuller H, Scharstein D. Evaluation of stereo matching costs on images with radiometric differences. IEEE Trans Pattern Anal Mach Intell. 2009;31(9):1582–1599.
  • Liang Q, Yang Y, Liu B. Stereo matching algorithm based on ground control points using graph cut. 2014 7th International Congress on Image and Signal Processing. IEEE; 2014. p. 503–508.
  • Wang L, Liao M, Gong M, et al. High-quality real-time stereo using adaptive cost aggregation and dynamic programming. Third International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT’06). IEEE. 2006. p. 798–805.
  • Hirschmuller H. Stereo processing by semiglobal matching and mutual information. IEEE Trans Pattern Anal Mach Intell. 2008;30(2):328–341.
  • Hamzah RA, Ibrahim H, Hassan AHA. Stereo matching algorithm based on per pixel difference adjustment, iterative guided filter and graph segmentation. J Vis Commun Image Represent. 2017;42:145–160.
  • Hallek, M., Boukamcha, H., Mtibaa, A. et al. Dynamic programming with adaptive and self-adjusting penalty for real-time accurate stereo matching. J Real-Time Image Proc. 2022;19:233–245.
  • Zhu S, Yan L. Local stereo matching algorithm with efficient matching cost and adaptive guided image filter. Vis Comput. 2017;33(9):1087–1102.
  • Kordelas GA, Alexiadis DS, Daras P, et al. Enhanced disparity estimation in stereo images. Image Vis Comput. 2015;35:31–49.
  • Hosni A, Rhemann C, Bleyer M, et al. Fast cost volume filtering for visual correspondence and beyond. IEEE Trans Pattern Anal Mach Intell. 2013;35(2):504–511.
  • Hosni A, Bleyer M, Rhemann C, et al. Real-time local stereo matching using guided image filtering. 2011 IEEE International Conference on Multimedia and Expo. 2011. p. 1–6.
  • Scharstein D, Szeliski R. A taxonomy and evaluation of dense two frame stereo correspondence algorithms. Int J Comput Vision. 2002;47(1):7–42.
  • Kendall A, Martirosyan H, Dasgupta S, et al. End-to-end learning of geometry and context for deep stereo regression. Proceedings of the IEEE International Conference on Computer Vision. Venice. 2017. p. 66–75.
  • Li X, Fan Y, Lv G, et al. Area-based correlation and non-local attention network for stereo matching. Vis Comput. 2022;38:3881–3895.
  • Wang Q, Shi S, Zheng S, et al. Fadnet: A fast and accurate network for disparity estimation. 2020 IEEE International Conference on Robotics and Automation (ICRA). 2020. p. 101–107.
  • Zheng GW, Jiang XH. A fast stereo matching algorithm based on fixed window. In: Applied mechanics and materials. Trans Tech. 2013;411–414:1305–1313.
  • Hirschmüller H, Innocent PR, Garibaldi J. Real-time correlation based stereo vision with reduced border errors. Int J Comput Vision. 2002;47(1):229–246.
  • Zabih R, Woodfill J. Non-parametric local transforms for computing visual correspondence. Proceedings of the Third European Conference on Computer Vision. Stockholm; 1994. p. 151–158.
  • Wang K. Adaptive stereo matching algorithm based on edge detection. 2004 International Conference on Image Processing, ICIP’04. 2, IEEE. 2004. p. 1345–1348.65.
  • Gu Z, Su X, Liu Y, et al. Local stereo matching with adaptive support-weight,: rank transform and disparity calibration. Pattern Recognit Lett. 2008;29(9):1230–1235.
  • Demetz O, Hafner D, Weickert J. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC. 2013.
  • Mei X, Sun X, Zhou M, et al. On building an accurate stereo matching system on graphics hardware. IEEE international Conference on Computer Vision Workshops (ICCV 74 Workshops). 2011. p. 467–474.
  • Tan P, Monasse P. Stereo disparity through cost aggregation with guided filter. Image Process Line. 2014;4:252–275.
  • Yang Q, Ji P, Li D, et al. Fast stereo matching using adaptive guided filtering. Image Vis Comput. 2014;32(3):202–211.
  • Zhan Y, Gu Y, Huang K, et al. Accurate image guided stereo matching with efficient matching cost and disparity refinement. IEEE Trans Circuits Syst Video Technol. 2016;26(9):1632–1645.
  • Wang L, Yang R, Gong M, et al. Real-time stereo using approximated joint bilateral filtering and dynamic programming. J Real-Time Image Process. 2014;9(3):447–461.
  • Hamzah R, Hamid M, Kadmin A, et al. Disparity map algorithm based on edge preserving filter for stereo video processing. J Telecommun Electron Comput Engg. 2018;10(1–7):59–62.
  • Zhu S, Wang Z, Zhang X, et al. Edge-preserving guided filtering based cost aggregation for stereo matching. J Vis Commun Image Represent. 2016;39:107–119.
  • Dong Q, Feng J. Adaptive disparity computation using local and non-local cost aggregations. Multimed Tools Appl. 2018;77(24):31647–31663.
  • Wu W, Zhu H, Yu S, et al. Stereo matching with fusing adaptive support weights. IEEE Access. 2019;7:61960–61974.
  • Lei C, Selzer J, Yang YH. Region-tree based stereo using dynamic programming optimization. 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06). 2, 2006. p. 2378–2385.
  • Kim JC, Lee KM, Choi BT, et al. A dense stereo matching using two-pass dynamic programming with generalized ground control points. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). 2, 2005. p. 1075–1082.
  • Chen F, Liu X, Yu H, et al. Clif: cross-layer information fusion for stereo matching and its hardware implementation. 2021 IEEE International Symposium on Circuits and Systems (ISCAS). 2021. pp. 1–5.
  • Cambuim LF, Oliveira LA, Barros EN, et al. An fpga-based real-time occlusion robust stereo vision system using semi-global matching. J Real-Time Image Process. 2020;17(5):1447–1468.
  • Chang Q, Maruyama T. Real-time stereo vision system: a multi-block matching on gpu. IEEE Access. 2018;6:42030–42046.
  • Hallek M, Smach F, Atri M. Real-time stereo matching on CUDA using Fourier descriptors and dynamic programming. Comput Vis Media. 2019;5(1):59–71.
  • Cox IJ, Hingorani SL, Rao SB, et al. A maximum likelihood stereo algorithm. Comput Vis Image Underst. 1996;63(3):542–567.
  • Jiao J, Wang R, Wang W, et al. Local stereo matching with improved matching cost and disparity refinement. IEEE MultiMedia. 2014;21(4):16–27.
  • Ma Z, He K, Wei Y, et al. Constant time weighted median filtering for stereo matching and beyond. Proceedings of the IEEE International Conference on Computer Vision. 2013. p. 49–56.
  • He K, Sun J, Tang X. Guided image filtering. IEEE Trans Pattern Anal Mach Intell. 2013;35(6):1397–1409.
  • Scharstein D, Hirschmüller H, Kitajima Y, et al. High-resolution stereo datasets with subpixel-accurate ground truth. German Conference on Pattern Recognition. 2014. pp. 31–42.
  • Menze M, Geiger A. Object scene flow for autonomous vehicles. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015. p. 3061–3070.
  • Kowalczuk J, Psota ET, Perez LC. Real-time stereo matching on CUDA using an iterative refinement method for adaptive support-weight correspondences. IEEE Trans: Circuits Syst Video Technol. 2013;23(1):94–104.
  • Mozerov MG, Van De Weijer J. Accurate stereo matching by two-step energy minimization. IEEE Trans Image Process. 2015;24(3):1153–1163.
  • Yin J, Zhu H, Yuan D, et al. Sparse representation over discriminative dictionary for stereo matching. Pattern Recognit. 2017;71:278–289.
  • Hu Y, Zhen W, Scherer S. Deep-learning assisted high-resolution binocular stereo depth reconstruction. 2020 IEEE International Conference on Robotics and Automation (ICRA). 2020. p. 8637–8643.
  • Chang Q, Zha A, Wang W, et al. Efficient stereo matching on embedded GPUs with zero-means cross correlation. J Syst Archit. 2022;123:102366.
  • Hirner D, Fraundorfer F. FC-DCNN: A densely connected neural network for stereo estimation. 2020 25th International Conference on Pattern Recognition (ICPR). IEEE; 2021. p. 2482–2489.
  • Boitumelo R, Jonas M, Martin W, et al. ReS2tAC-UAV-borne real-time SGM stereo optimized for embedded ARM and CUDA devices. MDPI Sensors. 2021;21(11):1–37.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.