14
Views
1
CrossRef citations to date
0
Altmetric
Original Paper

Isolation, characterization, and regulation of the CandidaalbicansERG27 gene encoding the sterol 3-keto reductase

, , , , , , & show all
Pages 461-473 | Received 22 Apr 2003, Accepted 05 Aug 2003, Published online: 09 Jul 2009

References

  • Georgopapadakou NH, Walsh TJ. Human mycoses: drugs and targets for emerging pathogens. Science 1994; 264: 371–371.
  • De Backer MD, Magee PT, Pla J. Recent developments in molecular genetics of Candida albicans. Ann Rev Microbiol 2000; 54: 463–498.
  • Vanden Bossche H, Willemssens G, Marichal P. Anti-Candida drugs — the biochemical basis for their activity. Grit Rev Microbiol 1987; 15: 57–72.
  • Sanglard D, Ischer F, Monod M, Bille J. Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology 1997; 143: 405–416.
  • Calabrese D, Bille J, Sanglard D. A novel multidrug efflux transporter gene of the major facilitator superfamily from Candida albicans (FLU1) conferring resistance to fluconazole. Microbiology 2000; 146: 2743–2754.
  • White TC. The presence of an R467K amino acid substitution and loss of allelic variation correlates with an azole-resistant lanosterol 14-alpha-demethylase in Candida albicans. Antimicrob Agents Chemother 1997; 41: 1488–1494.
  • White TC. Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient with human immunodeficiency virus. Ant imicrob Agents Chemother 1997; 41: 1482–1487.
  • Henry KW, Nickels JT, Edlind TD. Upregulation of ERG genes in Candida species by azoles and other sterol biosynthesis inhibitors. Ant imicrob Agents Chemother 2000; 44: 2693–2700.
  • De Backer MD, Ilyina T, Ma X-J, Vandoninck S, Luyten WHML, Vanden Bossche H. Genomic profiling of the response of Candida albicans to itraconazole treatment using a DNA microarray. Ant imicrob Agents Chemother 2001; 45: 1660–1670.
  • White TC, Man: KA, Bowden RA. Clinical, cellular and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 1998; 11: 382–402.
  • Kalb VK, Woods CW, Turi TG, Dey CR, Sutter TR, Loper J. Primary structure of the P450 lanosterol demethylase gene from Saccharomyces cerevisiae. DNA 1987; 6: 529–537.
  • Lai MH, Bard M, Pierson CA, Alexander JF, Goebl M, Carter GT, Kirsch DR. Identification of a gene family in the Sacchar-omyces cerevisiae ergosterol biosynthesis pathway. Gene 1994; 140: 401–449.
  • Lorenz RT, Parks LW. Cloning, sequencing and disruption of the gene encoding the C-14 sterol reductase in Saccharomyces cerevisiae. DNA Cell Biol 1992; 11: 685–692.
  • Marcireaux D, Guyonnet D, Karst F. Construction and growth properties of a yeast strain defective in sterol 14-reductase. Curr Genet 1992; 22: 267–272.
  • Bard M, Lees ND, Barbuch RJ, Sanglard D. Characterization of a cytochrome P-450 deficient mutant of Candida albicans. Biochem Biophys Res Commun 1987; 147: 794–800.
  • Shimokawa 0, Nakayama H. Phenotypes of Candida albicans mutants deficient in ( 8:7-isomerization or 5 desaturation. J Med Vet Mycol 1991; 29: 53–56.
  • Jia N, Arthington-Skaggs B, Lee W, Pierson CA, Lees ND, Eckstein J, Barbuch R, Bard M. Candida albicans sterol C-4 reductase, encoded by the ERG24 gene, as a potential antifungal target site. Ant imicrob Agents Chemother 2002; 46: 947–957.
  • Gaber RF, Copple DM, Kennedy BK, Vidal M, Bard M. The yeast gene ERG6 is required for normal membrane function but is not essential for biosynthesis of the cell cycle sterol. Mol Cell Biol 1989; 9: 3447–3456.
  • Jenson-Pergakes KL, Kennedy MA, Lees ND, Barbuch R, Koegel C, Bard M. Sequencing, disruption, and characterization of the Candida albicans sterol methyltransferase (ERG6) gene: Drug susceptibility studies in erg6 mutants. Antimicrob Agents Che-mother 1998; 42: 1160–1167.
  • Bard M, Bruner DA, Pierson CA, Lees ND, Biermann B, Frye L, Koegel C, Barbuch R. Cloning and characterization of ERG25, the Saccharomyces cerevisiae gene encoding the C-4 sterol methyl oxidase. Proc Natl Acad Sci USA 1996; 93: 186–190.
  • Gachotte D, Pierson CA, Lees ND, Barbuch R, Koegel C, Bard M. A yeast sterol auxotroph (erg25) is rescued by addition of azole antifungals and reduced levels of heme. Proc Natl Acad Sci USA 1997; 94: 11173–11178.
  • Kennedy MA, Johnson TA, Lees ND, Barbuch R, Eckstein JA, Bard M. Cloning and sequencing of the Candida albicans C-4 sterol methyl oxidase gene (ERG25) and expression of an ERG25 conditional lethal mutation in Saccharomyces cerevisiae. Lipids 2000; 35: 257–262.
  • Gachotte D, Barbuch R, Gaylor J, Nickel E, Bard M. Character-ization of the Saccharomyces cerevisiae ERG26 gene encoding the C-3 sterol dehydrogenase (C-4 decarboxylase) involved in sterol biosynthesis. Proc Natl Acad Sci USA 1998; 95: 13794–13799.
  • Aaron KE, Pierson CA, Lees ND, Bard M. The Candida albicans ERG26 gene encoding the C-3 sterol dehydrogenase (C-4 dec-arboxylase) is essential for growth. FEMS Yeast Res 2001; 1: 93–101.
  • Gachotte D, Sen SE, Eckstein J, Barbuch R, Keiger M, Ray BD, Bard M. Characterization of the Saccharomyces cerevisiae ERG27 gene encoding the 3-keto reductase in C-4 demethylation. Proc Natl Acad Sci USA 1999; 96: 12655–12660.
  • Mo C, Milla P, Athenstaedt K, Ott R, Balliano G, Daum G, Bard M. In yeast sterol biosynthesis the 3-keto reductase protein (Erg27p) is required for oxidosqualene cyclase (Erg7p) activity. Biochim Biophys Acta 2003; 1633: 68–74.
  • Gachotte D, Eckstein J, Barbuch R, Hughes T, Roberts C, Bard M. A novel gene conserved from yeast to humans is involved in sterol biosynthesis. J Lipid Res 2001; 42: 150–154.
  • Mo C, Valachovic M, Randall SK, Nickels JT, Bard M. Protein-protein interactions among C-4 demethylation enzymes involved in yeast sterol biosynthesis. Proc Natl Acad Sci USA 1999; 99: 9739–9744.
  • Nose H, Hideki H, Seki A, Watabe H, Hoshiko S. PF1163A, a novel antifungal agent, inhibit ergosterol biosynthesis at C-4 sterol methyl oxidase. J Antibiot 2002; 55: 969–974.
  • Wilson RB, Davis D, Mitchell AR Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol 1999; 181: 1868–1874.
  • Fonzi WA, Irwin MY. Isogenic strain construction and gene mapping in Candida albicans. Genetics 1992; 134: 717–728.
  • Brown DH, Slobodkin IV, Kumamoto C. Stable transformation and regulated expression of an inducible reporter construct in Candida albicans using restriction enzyme-mediated integration. Mol Gen Genet 1996; 251: 75–80.
  • Goshorn AK, Grindle SM, Scherer S. Gene isolation by complementation in Candida albicans and applications to physical and genetic mapping. Infect Immun 1992; 60: 876–884.
  • Ausubel F, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K, eds. Short Protocols in Molecular Biology, 3rd edn. New York: John Wiley & Sons, 1995.
  • Gietz RD, Schiestl RH, Willems AR. Woods RA. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 1995; 11: 355–360.
  • Molzhan SW, Woods RA. Polyene resistance and the isolation of sterol mutants in Saccharomyces cerevisiae. J Gen Microbiol 1972; 72: 339–348.
  • Kurtz MB, Marrinan J. Isolation of hem3 mutants from Candida albicans by sequential gene disruptions. Mol Gen Genet 1989; 217: 47–52.
  • Santos MAS, Perreau VM, Tuite MF. Transfer RNA structural change is a key element in the reassignment of the GUG codon in Candida albicans. EMBO J 1996; 15: 5060–5068.
  • Bard M, Lees ND, Turi T, Craft D, Cofrin L, Barbuch R, Koegel C, Loper JC. Sterol synthesis and viability of ergl I (cytochrome P-450 lanosterol demethylase) mutations in Saccharomyces cer-evisiae and Candida albicans. Lipids 1993; 28: 963–967.
  • Watson PF, Rose ME, Ellis SW, England H, Kelly SL. Defective sterol C5-6 desaturation and azole resistance: a new hypothesis for the mode of action of azole antifungals. Biochem Biophys Res Commun 1989; 164: 1170–1175.
  • Backen AC, Broadbent ID, Fetherston RW, Rosamond JDC, Schnell NF, Stark MJR. Evaluation of the CaMAL2 promoter for regulated expression of genes in Candida albicans. Yeast 2000; 16: 1121–1129.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.