67
Views
5
CrossRef citations to date
0
Altmetric
Biology of Aspergillus

Nitrogen metabolism of Aspergillus and its role in pathogenicity

&
Pages 31-40 | Published online: 09 Jul 2009

References

  • Raper KB, Fennell DI. The Genus Aspergillus. Williams & Wilkins, Baltimore 1965
  • Samson RA. The genus Aspergillus with special regard to the Aspergillus fumigatus group. Contrib Microbiol 1999; 2: 5–20
  • Millner PD, Marsh PB, Snowden RB, Parr JF. Occurrence of Aspergillus fumigatus during composting of sewage sludge. Appl Environ Microbiol 1977; 34: 765–772
  • Mullins J, Harvey R, Seaton A. Sources and incidence of airborne Aspergillus fumigatus (Fres). Clin Allergy 1976; 6: 209–217
  • Debeaupuis JP, Sarfati J, Chazalet V, Latge JP. Genetic diversity among clinical and environmental isolates of Aspergillus fumigatus. Infect Immun 1997; 65: 3080–3085
  • Haines J. Aspergillus in compost: straw man or fatal flaw. Biocycle 1995; 6: 32–35
  • Rüchel R, Reichard U. Pathogenesis and clinical presentation of aspergillosis. Contrib Microbiol 1999; 2: 21–43
  • Fresenius G. Beiträge zur Mykologie. Frankfurt a. M, Brönner 1863; 81–82
  • Kwon-Chung KJ, Bennett JE. Aspergillosis, in Medical Mycology. Lea & Febinger, Philadelphia 1992; 201–247
  • Latge JP. Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev 1999; 12: 310–350
  • Kontoyiannis DP, Bodey GP. Invasive aspergillosis in 2002: an update. Eur J Clin Microbiol Infect Dis 2002; 21: 161–172
  • Casadevall A, Pirofski LA. The damage-response framework of microbial pathogenesis. Nat Rev Microbiol 2003; 1: 17–24
  • Latge JP. The pathobiology of Aspergillus fumigatus. Trends Microbiol 2001; 9: 382–389
  • Holden DW, Tang CM, Smith JM. Molecular genetics of Aspergillus pathogenicity. Antonie Van Leeuwenhoek 1994; 65: 251–255
  • Marzluf GA. Regulation of sulfur and nitrogen metabolism in filamentous fungi. Annu Rev Microbiol 1993; 47: 31–55
  • Pateman JA, Rever BM, Cove DJ. Genetic and biochemical studies of nitrate reduction in Aspergillus nidulans. Biochem J 1967; 104: 103–111
  • Johnstone IL, McCabe PC, Greaves P, et al. Isolation and characterisation of the crnA-niiA-niaD gene cluster for nitrate assimilation in Aspergillus nidulans. Gene 1990; 90: 181–192
  • Burger G, Tilburn J, Scazzocchio C. Molecular cloning and functional characterization of the pathway-specific regulatory gene nirA, which controls nitrate assimilation in Aspergillus nidulans. Mol Cell Biol 1991; 11: 795–802
  • Kudla B, Caddick MX, Langdon T, et al. The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger. EMBO J 1990; 9: 1355–1364
  • Narendja F, Goller SP, Wolschek M, Strauss J. Nitrate and the GATA factor AreA are necessary for in vivo binding of NirA, the pathway-specific transcriptional activator of Aspergillus nidulans. Mol Microbiol 2002; 44: 573–583
  • Muro-Pastor MI, Strauss J, Ramon A, Scazzocchio C. A paradoxical mutant GATA factor. Eukaryot Cell 2004; 3: 393–405
  • Amaar YG, Moore MM. Mapping of the nitrate-assimilation gene cluster (crnA-niiA-niaD) and characterization of the nitrite reductase gene (niiA) in the opportunistic fungal pathogen Aspergillus fumigatus. Curr Genet 1998; 33: 206–215
  • Cove DJ. Genetic studies of nitrate assimilation in Aspergillus nidulans. Biol Rev Camb Philos Soc 1979; 54: 291–327
  • Hensel M, Arst HN, Jr. Aufauvre-Brown A, Holden DW. The role of the Aspergillus fumigatus, areA gene in invasive pulmonary aspergillosis. Mol Gen Genet 1998; 258: 553–557
  • Xue T, Nguyen CK, Romans A, May GS. A mitogen-activated protein kinase that senses nitrogen regulates conidial germination and growth in Aspergillus fumigatus. Eukaryot Cell 2004; 3: 557–560
  • Kawasaki L, Sanchez O, Shiozaki K, Aguirre J. SakA MAP kinase is involved in stress signal transduction, sexual development and spore viability in Aspergillus nidulans. Mol Microbiol 2002; 45: 1153–1163
  • Gustin MC, Albertyn J, Alexander M, Davenport K. MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1998; 62: 1264–1300
  • Han KH, Prade RA. Osmotic stress-coupled maintenance of polar growth in Aspergillus nidulans. Mol Microbiol 2002; 43: 1065–1078
  • Panepinto JC, Oliver BG, Fortwendel JR, et al. Deletion of the Aspergillus fumigatus gene encoding the ras-related protein RhbA reduces virulence in a model of invasive pulmonary aspergillosis. Infect Immun 2003; 71: 2819–2826
  • d'Enfert C, Diaquin M, Delit A, et al. Attenuated virulence of uridine-uracil auxotrophs of Aspergillus fumigatus. Infect Immun 1996; 64: 4401–4405
  • d'Enfert C. Selection of multiple disruption events in Aspergillus fumigatus using the orotidine-5'-decarboxylase gene, pyrG, as a unique transformation marker. Curr Genet 1996; 30: 76–82
  • Tang CM, Smith JM, Arst HN, Jr, Holden DW. Virulence studies of Aspergillus nidulans mutants requiring lysine or p-aminobenzoic acid in invasive pulmonary aspergillosis. Infect Immun 1994; 62: 5255–5260
  • Brown JS, Aufauvre-Brown A, Brown J, et al. Signature-tagged and directed mutagenesis identify PABA synthetase as essential for Aspergillus fumigatus pathogenicity. Mol Microbiol 2000; 36: 1371–1380
  • Valerius O, Draht O, Kübler E, et al. Regulation of hisHF transcription of Aspergillus nidulans by adenine and amino acid limitation. Fungal Genet Biol 2001; 32: 21–31
  • Krappmann S, Helmstaedt K, Gerstberger T, et al. The aroC gene of Aspergillus nidulans codes for a monofunctional, allosterically regulated chorismate mutase. J Biol Chem 1999; 274: 22275–22282
  • Krappmann S, Braus GH. Deletion of Aspergillus nidulans, aroC using a novel blaster module that combines ET cloning and marker rescue. Mol Genet Genomics 2003; 268: 675–683
  • Eckert SE, Kübler E, Hoffmann B, Braus GH. The tryptophan synthase-encoding trpB gene of Aspergillus nidulans is regulated by the cross-pathway control system. Mol Gen Genet 2000; 263: 867–876
  • Busch S, Hoffmann B, Valerius O, et al. Regulation of the Aspergillus nidulans, hisB gene by histidine starvation. Curr Genet 2001; 38: 314–322
  • Nishida H, Nishiyama M. What is characteristic of fungal lysine synthesis through the alpha-aminoadipate pathway?. J Mol Evol 2000; 51: 299–302
  • Zabriskie TM, Jackson MD. Lysine biosynthesis and metabolism in fungi. Nat Prod Rep 2000; 17: 85–97
  • Brakhage AA. Molecular regulation of beta-lactam biosynthesis in filamentous fungi. Microbiol Mol Biol Rev 1998; 62: 547–585
  • Garrad RC, Bhattacharjee JK. Lysine biosynthesis in selected pathogenic fungi: characterization of lysine auxotrophs and the cloned LYS1 gene of Candida albicans. J Bacteriol 1992; 174: 7379–7384
  • Busch S, Bode HB, Brakhage AA, Braus GH. Impact of the cross-pathway control on the regulation of lysine and penicillin biosynthesis in Aspergillus nidulans. Curr Genet 2003; 42: 209–219
  • Liebmann B, Mühleisen TW, Müller M, et al. Deletion of the Aspergillus fumigatus lysine biosynthesis gene lysF encoding homoaconitase leads to attenuated virulence in a low-dose mouse infection model of invasive aspergillosis. Arch Microbiol 2004; 181: 378–383
  • Weidner G, Steffan B, Brakhage AA. The Aspergillus nidulans, lysF gene encodes homoaconitase, an enzyme involved in the fungus-specific lysine biosynthesis pathway. Mol Gen Genet 1997; 255: 237–247
  • Hinnebusch AG. The general control of amino acid biosynthetic genes in the yeast Saccharomyces cerevisiae. CRC Crit Rev Biochem 1986; 21: 277–317
  • Carsiotis M, Jones RF. Cross-pathway regulation: tryptophan-mediated control of histidine and arginine biosynthetic enzymes in Neurospora crassa. J Bacteriol 1974; 119: 889–892
  • Carsiotis M, Jones RF, Wesseling AC. Cross-pathway regulation: histidine-mediated control of histidine, tryptophan, and arginine biosynthetic enzymes in Neurospora crassa. J Bacteriol 1974; 119: 893–898
  • Natarajan K, Meyer MR, Jackson BM, et al. Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol 2001; 21: 4347–4368
  • Hinnebusch AG. Translational regulation of yeast GCN4. A window on factors that control initiator-tRNA binding to the ribosome. J Biol Chem 1997; 272: 21661–21664
  • Hinnebusch AG, Natarajan K. Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot Cell 2002; 1: 22–32
  • Irniger S, Braus GH. Controlling transcription by destruction: the regulation of yeast Gcn4p stability. Curr Genet 2003; 44: 8–18
  • Wanke C, Eckert S, Albrecht G, et al. The Aspergillus niger, GCN4 homologue, cpcA, is transcriptionally regulated and encodes an unusual leucine zipper. Mol Microbiol 1997; 23: 23–33
  • Hoffmann B, Valerius O, Andermann M, Braus GH. Transcriptional autoregulation and inhibition of mRNA translation of amino acid regulator gene cpcA of filamentous fungus Aspergillus nidulans. Mol Biol Cell 2001; 12: 2846–2857
  • Krappmann S, Bignell EM, Reichard U, et al. The Aspergillus fumigatus transcriptional activator CpcA contributes significantly to the virulence of this fungal pathogen. Mol Microbiol 2004; 52: 785–799
  • Mueller PP, Hinnebusch AG. Multiple upstream AUG codons mediate translational control of GCN4. Cell 1986; 45: 201–207
  • Albrecht G, Mösch H-U, Hoffmann B, Reusser U, Braus GH. Monitoring the Gcn4 protein-mediated response in the yeast Saccharomyces cerevisiae. J Biol Chem 1998; 273: 12696–12702
  • Roussou I, Thireos G, Hauge BM. Transcriptional-translational regulatory circuit in Saccharomyces cerevisiae which involves the GCN4 transcriptional activator and the GCN2 protein kinase. Mol Cell Biol 1988; 8: 2132–2139
  • Sattlegger E, Hinnebusch AG, Barthelmess IB. cpc-3, the Neurospora crassa homologue of yeast GCN2, encodes a polypeptide with juxtaposed eIF2alpha kinase and histidyl-tRNA synthetase-related domains required for general amino acid control. J Biol Chem 1998; 273: 20404–20416
  • Rubin-Bejerano I, Fraser I, Grisafi P, Fink GR. Phagocytosis by neutrophils induces an amino acid deprivation response in Saccharomyces cerevisiae and Candida albicans. Proc Natl Acad Sci USA 2003; 100: 11007–11012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.