91
Views
4
CrossRef citations to date
0
Altmetric
Pathogenesis

Aspergillusfumigatus conidial pigment and cAMP signal transduction: significance for virulence

&
Pages 75-82 | Published online: 09 Jul 2009

References

  • Pitt JI. The current role of Aspergillus and Penicillium in human and animal health. J Med Vet Mycol 1994; 32(Suppl 1)17–32
  • Rüchel R, Reichard U. Pathogenesis and clinical presentation of aspergillosis. Contributions to Microbiology vol. 2: Aspergillus fumigatus: Biology, Clinical Aspects, and Molecular Approaches to Pathogenicity, AA Brakhage, B Jahn, A Schmidt. Karger, Basel 1999; 2143
  • Samson RA. The genus Aspergillus with special regard to the Aspergillus fumigatus group. Contributions to Microbiology vol. 2: Aspergillus fumigatus: Biology, Clinical Aspects, and Molecular Approaches to Pathogenicity, AA Brakhage, B Jahn, A Schmidt. Karger, Basel 1999; 5–20
  • Jacobson ES. Pathogenic roles for fungal melanins. Clin Microbiol Rev 2000; 13: 708–717
  • Hamilton AJ, Gomez BL. Melanins in fungal pathogens. J Med Microbiol 2002; 51: 189–191
  • Langfelder K, Streibel M, Jahn B, et al. Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet Biol 2003; 38: 143–158
  • Brakhage AA, Langfelder K. Menacing mold: the molecular biology of Aspergillus fumigatus. Annu Rev Microbiol 2002; 56: 433–455
  • Brakhage AA, Jahn B. Molecular mechanisms of pathogenicity of Aspergillus fumigatus. Molecular Biology of Fungal Development, HD Osiewacz. Marcel Dekker Inc, Dordrecht 2002; 559–582
  • Haase G, Brakhage AA. Melanized fungi infecting humans. Function of melanin as a pathogenicity factor. The Mycota.vol. XII, Human Fungal Pathogens, JE Domer, GS Kobayashi. Springer. 2004; 67–88
  • Liebmann B, Gattung S, Jahn B, Brakhage AA. cAMP signaling in Aspergillus fumigatus is involved in the regulation of the virulence determinant-encoding gene pksP and the defense against killing by macrophages. Mol Gen Gen 2003; 269: 420–435
  • Liebmann B, Müller M, Braun A, Brakhage AA. The cyclic AMP-dependent protein kinase A network regulates development and virulence in Aspergillus fumigatus. Infect Immun 2004; 72: 5193–5203
  • Oliver BG, Panepinto JC, Fortwendel JR, et al. Cloning and expression of pkaC and pkaR, the genes encoding the cAMP-dependent protein kinase of Aspergillus fumigatus. Mycopathologia 2001; 154: 85–91
  • Wheeler MH, Bell AA. Melanins and their importance in pathogenic fungi. Current Topics in Medical Mycology, MR McGinnis. Springer, New York 1988; 338–387
  • Langfelder K, Jahn B, Gehringer H, et al. Identification of a polyketide synthase gene (pksP) of Aspergillus fumigatus involved in conidial pigment biosynthesis and virulence. Med Microbiol Immunol 1998; 187: 79–89
  • Tsai H-F, Yun CC, Washburn RG, et al. The developmentally regulated alb1 gene of Aspergillus fumigatus: Its role in modulation of conidial morphology and virulence. J Bacteriol 1998; 180: 3031–3038
  • Brakhage AA, Langfelder K, Wanner G, . Pigment biosynthesis and virulence. Contributions to Microbiology vol. 2: Aspergillus fumigatus: Biology, Clinical Aspects, and Molecular Approaches to Pathogenicity, AA Brakhage, B Jahn, A Schmidt, et al. Karger, Basel 1999; 205–215
  • Tsai H-F, Wheeler MH, Chang YC, Kwon-Chung KJ. A developmentally regulated gene cluster involved in conidial pigment biosynthesis in Aspergillus fumigatus. J Bacteriol 1999; 181: 6469–6477
  • Tsai H-F, Fujii I, Watanabe A, et al. Pentaketide-melanin biosynthesis in Aspergillus fumigatus requires chain-length shortening of a heptaketide precursor. J Biol Chem 2001; 276: 29292–29298
  • Tsai H-F, Washburn RG, Chang YC, Kwon-Chung KJ. Aspergillus fumigatus, arp1 modulates conidial pigmentation and complement deposition. Mol Microbiol 1997; 26: 175–183
  • Thompson JE, Fahnestock S, Farrall L, et al. The second naphthol reductase of fungal melanin biosynthesis in Magnaporthe grisea: tetrahydroxynaphthalene reductase. J Biol Chem 2000; 275: 34867–34872
  • Sakemi S, Inagaki T, Kaneda K, et al. CJ-12,371 and CJ-12,372, two novel DNA gyrase inhibitors. Fermentation, isolation, structural elucidation and biological activities. J Antibiot 2000; 48: 134–142
  • Fujii I, Mori Y, Watanabe A, Kubo Y, et al. Enzymatic synthesis of 1,3,5,8-tetrahydroxy-naphthalene solely from malonyl coenzyme A by a fungal iterative type I polyketide synthase PKS1. Biochem 2000; 39: 8853–8858
  • Fujii, I, Yasuoka, Y, Tsai, H-F, , et al. Hydrolytic polyketide shortening by Ayg1p, a novel enzyme involved in fungal melanin biosynthesis. J Biol Chem 2004; 279: 44613–44620.
  • Vidal-Cros A, Viviani F, Labesse G, Boccara M, Gaudry M. Polyhydroxynaphthalene reductase involved in melanin biosynthesis in Magnaporthe grisea. Purification, cDNA cloning and sequencing. Eur J Biochem 1994; 219: 985–992
  • Butler MJ, Day AW. Fungal melanins: a review. Can J Microbiol 1998; 44: 1115–1136
  • Kwon-Chung KJ, Bennett JE. Medical Mycology. Lea and Febiger, Malven, PA 1992
  • Currie BP, Casadevall A. Estimation of the prevalence of cryptococcal infection among patients infected with the human immunodeficiency virus in New York City. Clin Infect Dis 1994; 19: 1029–1033
  • Chaskes S, Tyndall RL. Pigment production by Cryptococcus neoformans from para- and ortho-diphenolics: effect of the nitrogen source. J Clin Microbiol 1975; 1: 509–514
  • Brush L, Money NP. Invasive hyphal growth in Wangiella dermatitidis is induced by stab inoculation and shows dependence upon melanin biosynthesis. Fungal Genet Biol 1999; 28: 190–200
  • Romero-Martinez R, Wheeler M, Guerrero-Plata A, et al. Biosynthesis and functions of melanin in Sporothrix schenckii. Infect Immun 2000; 68: 3696–3703
  • Feng B, Wang X, Hauser M, et al. Molecular cloning and characterisation of WdPKS1, a gene involved in dihydroxynaphthalene melanin biosynthesis and virulence in Wangiella (Exophiala) dermatitidis. Infect Immun 2001; 69: 1781–1794
  • Schnitzler N, Peltroche-Llacsahuanga H, Bestier N, et al. Effect of melanin and carotenoids of Exophiala (Wangiella) dermatitidis on phagocytosis, oxidative burst, and killing by human neutrophils. Infect Immun 1999; 67: 94–101
  • Jahn B, Koch A, Schmidt A, et al. Isolation and characterisation of an Aspergillus fumigatus mutant strain with pigmentless conidia and reduced virulence. Infect Immun 1997; 65: 5110–5117
  • Jahn B, Boukhallouk F, Lotz J, et al. Interaction of human phagocytes with pigmentless Aspergillus conidia. Infect Immun 2000; 68: 3736–3739
  • Latgé J-P. Aspergillus fumigatus and Aspergillosis. Clin Microbiol Rev 1999; 12: 310–350
  • Ibrahim-Granet O, Philippe B, Boleti H, et al. Phagocytosis and intracellular fate of Aspergillus fumigatus conidia in alveolar macrophages. Infect Immun 2003; 71: 891–903
  • Schneemann M, Schaffner A. Host-defense mechanisms in Aspergillus infections. Contributions to Microbiology vol. 2: Aspergillus fumigatus: Biology, Clinical Aspects, and Molecular Approaches to Pathogenicity, AA Brakhage, B Jahn, A Schmidt. Karger, Basel 1999; 57–68
  • Jahn B, Langfelder K, Schneider U, et al. PKSP dependent reduction of phagolysosome fusion and intracellular kill of Aspergillus fumigatus conidia by human macrophages. Cell Microbiol 2002; 4: 793–804
  • Fillinger S, Chaveroche MK, Shimizu K, Keller N, d'Enfert C. cAMP and ras signalling independently control spore germination in the filamentous fungus Aspergillus nidulans. Mol Microbiol 2002; 44: 1001–1016
  • Shimizu K, Keller NP. Genetic involvement of a cAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans. Genetics 2001; 157: 591–600
  • Staudohar M, Bencina M, van de Vondervoort PJ, et al. Cyclic AMP-dependent protein kinase is involved in morphogenesis of Aspergillus niger. Microbiol 2002; 148: 2635–2645
  • Langfelder K, Philippe B, Jahn B, et al. Differential expression of the Aspergillus fumigatus pksP gene detected in vitro and in vivo with green fluorescent protein. Infect Immun 2001; 69: 6411–6418
  • Liebmann B, Mühleisen TW, Müller M, et al. Deletion of the Aspergillus fumigatus lysine biosynthesis gene lysF encoding homoaconitase leads to attenuated virulence in a low-dose mouse infection model of invasive aspergillosis. Arch Microbiol 2004; 181: 378–383
  • D'Souza CA, Alspaugh JA, Yue C, et al. Cyclic AMP-dependent protein kinase controls virulence of the fungal pathogen Cryptococcus neoformans. Mol Cell Biol 2001; 21: 3179–3191
  • Dürrenberger F, Wong K, Kronstad JW. Identification of a cAMP-dependent protein kinase catalytic subunit required for virulence and morphogenesis in Ustilago maydis. Proc Natl Acad Sci USA 1998; 95: 5684–5689
  • Bölker M. Sex and crime: heterotrimeric G proteins in fungal mating and pathogenesis. Fungal Genet Biol 1998; 25: 143–156
  • D'Souza CA, Heitman J. Conserved cAMP signaling cascades regulate fungal development and virulence. FEMS Microbiol Rev 2001; 25: 349–364
  • Kronstad J, De Maria AD, Funnell D, et al. Signaling via cAMP in fungi: interconnections with mitogen-activated protein kinase pathways. Arch Microbiol 1998; 170: 395–404
  • Lengeler KB, Davidson RC, D'Souza C, et al. Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 2000; 64: 746–785
  • Alspaugh JA, Perfect JR, Heitmann J. Cryptococcus neoformans mating and virulence are regulated by the G-protein alpha-subunit GPA1 and cAMP. Genes Dev 1997; 11: 3206–3217
  • Tolkacheva T, McNamara P, Piekarz E, Courchesne W. Cloning of a Cryptococcus neoformans gene, GPA1, encoding a G-protein alpha-subunit homolog. Infect Immun 1994; 62: 2849–2856
  • De Jong JC, McCormack N, Smirnoff N, Talbot NT. Glycerol generates turgor in rice blast. Nature 1997; 389: 244–245
  • Howard RJ. Cell biology of pathogenesis. Rice Blast Disease, RS Zeigler, SA Leong, PS Teng. CAB International, Wallington 1994; 3–22
  • Howard RJ, Ferrari MA. Role of melanin in appressorium formation. Exp Mycol 1989; 13: 403–418
  • Howard RJ, Bourett TM, Ferrari MA. Infection by Magnaporthe grisea: an in vitro analysis. Electron Microscopy of Plant Pathogens, K Mendgen, DE Lesemann. Springer, Berlin 1991; 251–264
  • Choi W, Dean RA. The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Plant Cell 1997; 9: 1973–1983
  • Liu S, Dean RA. G-protein alpha-subunit genes control growth, development, and pathogenicity of Magnaporthe grisea. Mol Plant-Microbe Interact 1997; 10: 1075–1086
  • Mitchell TK, Dean RA. The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea. Plant Cell 1995; 7: 1869–1878

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.