91
Views
7
CrossRef citations to date
0
Altmetric
Pathogenesis

Thermotolerance and virulence of Aspergillus fumigatus: role of the fungal nucleolus

& , Ph.D.
Pages 87-93 | Published online: 09 Jul 2009

References

  • Latge JP. Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev 1999; 12: 310–350
  • Denning DW. Invasive aspergillosis. Clin Infect Dis 1998; 26: 781–803
  • Lin SJ, Schranz J, Teutsch SM. Aspergillosis case-fatality rate: systematic review of the literature. Clin Infect Dis 2001; 32: 358–366
  • Hospenthal DR, Kwon-Chung KJ, Bennett JE. Concentrations of airborne Aspergillus compared to the incidence of invasive aspergillosis: lack of correlation. Med Mycol 1998; 36: 165–168
  • Beffa T, Staib F, Lott Fischer J, et al. Mycological control and surveillance of biological waste and compost. Med Mycol 1998; 36(Suppl 1)137–145
  • St-Germain G, Summerbell R. Identifying filamentous fungi: A clinical laboratory handbook. Star Publishing Co., Belmont, CA 1996
  • Cooney D, Emerson R. Thermophilic fungi. An account of their biology, activities and classification. W.H. Freeman & Co., San Francisco 1964
  • Maheshwari R, Bharadwaj G, Bhat MK. Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 2000; 64: 461–488
  • Tansey MR, Brock TD. The upper temperature limit for eukaryotic organisms. Proc Natl Acad Sci USA 1972; 69: 2426–2428
  • Madigan MT, Oren A. Thermophilic and halophilic extremophiles. Curr Opin Microbiol 1999; 2: 265–269
  • Konkel ME, Tilly K. Temperature-regulated expression of bacterial virulence genes. Microbes Infect 2000; 2: 157–166
  • Gophna U, Ron EZ. Virulence and the heat shock response. Int J Med Microbiol 2003; 292: 453–461
  • Kwon-Chung KJ, Polacheck I, Popkin TJ. Melanin-lacking mutants of Cryptococcus neoformans and their virulence for mice. J Bacteriol 1982; 150: 1414–1421
  • Kwon-Chung KJ. Comparison of isolates of Sporothrix schenckii obtained from fixed cutaneous lesions with isolates from other types of lesions. J Infect Dis 1979; 139: 424–431
  • Medoff G, Maresca B, Lambowitz AM, et al. Correlation between pathogenicity and temperature sensitivity in different strains of Histoplasma capsulatum. J Clin Invest 1986; 78: 1638–1647
  • Caruso M, Sacco M, Medoff G, Maresca B. Heat shock 70 gene is differentially expressed in Histoplasma capsulatum strains with different levels of thermotolerance and pathogenicity. Mol Microbiol 1987; 1: 151–158
  • Gargano S, Di Lallo G, Kobayashi GS, Maresca B. A temperature-sensitive strain of Histoplasma capsulatum has an altered Δ9-fatty acid desaturase gene. Lipids 1995; 30: 899–906
  • McCusker JH, Clemons KV, Stevens DA, Davis RW. Saccharomyces cerevisiae virulence phenotype as determined with CD-1 mice is associated with the ability to grow at 42 degrees C and form pseudohyphae. Infect Immun 1994; 62: 5447–5455
  • Clemons KV, McCusker JH, Davis RW, Stevens DA. Comparative pathogenesis of clinical and nonclinical isolates of Saccharomyces cerevisiae. J Infect Dis 1994; 169: 859–867
  • McCusker JH, Clemons KV, Stevens DA, Davis RW. Genetic characterization of pathogenic Saccharomyces cerevisiae isolates. Genetics 1994; 136: 1261–1269
  • Kamada Y, Jung US, Piotrowski J, Levin DE. The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. Genes Dev 1995; 9: 1559–1571
  • Lindquist S, Kim G. Heat-shock protein 104 expression is sufficient for thermotolerance in yeast. Proc Natl Acad Sci USA 1996; 93: 5301–5306
  • Ohkuni K, Okuda A, Kikuchi A. Yeast Nap1-binding protein Nbp2p is required for mitotic growth at high temperatures and for cell wall integrity. Genetics 2003; 165: 517–529
  • Ufano S, del Rey F, Vazquez de Aldana CR. Swm1p, a subunit of the APC/cyclosome, is required to maintain cell wall integrity during growth at high temperature in Saccharomyces cerevisiae. FEMS Microbiol Lett 2004; 234: 371–378
  • Schmitt M, Neupert W, Langer T. The molecular chaperone Hsp78 confers compartment-specific thermotolerance to mitochondria. J Cell Biol 1996; 134: 1375–1386
  • Lee SM, Park JW. Thermosensitive phenotype of yeast mutant lacking thioredoxin peroxidase. Arch Biochem Biophys 1998; 359: 99–106
  • Bialek-Wyrzykowska U, Bauer BE, Wagner W, et al. Low levels of Ypt protein prenylation cause vesicle polarization defects and thermosensitive growth that can be suppressed by genes involved in cell wall maintenance. Mol Microbiol 2000; 35: 1295–1311
  • Werner-Washburne M, Braun E, Johnston GC, Singer RA. Stationary phase in the yeast Saccharomyces cerevisiae. Microbiol Rev 1993; 57: 383–401
  • Sherman F. The effects of elevated temperatures on yeast. I. Nutrient requirements for growth at elevated temperatures. J Cell Comp Physiol 1959; 54: 29–35
  • Matmati N, Morpurgo G, Babudri N, Marini A. The influence of colonial organization on thermotolerance and thermoresistance in Saccharomyces cerevisiae. J Basic Microbiol 2002; 42: 345–54
  • Piper PW. Molecular events associated with acquisition of heat tolerance by the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 1993; 11: 339–355
  • Plesset J, Ludwig JR, Cox BS, McLaughlin CS. Effect of cell cycle position on thermotolerance in Saccharomyces cerevisiae. J Bacteriol 1987; 169: 779–784
  • Alspaugh JA, Cavallo LM, Perfect JR, Heitman J. RAS1 regulates filamentation, mating and growth at high temperature of Cryptococcus neoformans. Mol Microbiol 2000; 36: 352–365
  • Fox DS, Cruz MC, Sia RA, et al. Calcineurin regulatory subunit is essential for virulence and mediates interactions with FKBP12-FK506 in Cryptococcus neoformans. Mol Microbiol 2001; 39: 835–849
  • Odom A, Muir S, Lim E, et al. Calcineurin is required for virulence of Cryptococcus neoformans. Embo J 1997; 16: 2576–2589
  • Bader T, Bodendorfer B, Schroppel K, Morschhauser J. Calcineurin is essential for virulence in Candida albicans. Infect Immun 2003; 71: 5344–5354
  • Liu H, Kauffman S, Becker JM, Szaniszlo PJ. Wangiella (Exophiala) dermatitidis WdChs5p, a class V chitin synthase, is essential for sustained cell growth at temperature of infection. Eukaryot Cell 2004; 3: 40–51
  • Posas F, Takekawa M, Saito H. Signal transduction by MAP kinase cascades in budding yeast. Curr Opin Microbiol 1998; 1: 175–182
  • Kraus PR, Fox DS, Cox GM, Heitman J. The Cryptococcus neoformans MAP kinase Mpk1 regulates cell integrity in response to antifungal drugs and loss of calcineurin function. Mol Microbiol 2003; 48: 1377–1387
  • Kraus, PR, Boily, M-J, Giles, SS, , et al. Identification of Cryptococcus neoformans temperature-regulated genes by use of a genomic-DNA microarray. Eukaryot Cell 2004; in press.
  • Rooney PJ, Sullivan TD, Klein BS. Selective expression of the virulence factor BAD1 upon morphogenesis to the pathogenic yeast form of Blastomyces dermatitidis: evidence for transcriptional regulation by a conserved mechanism. Mol Microbiol 2001; 39: 875–889
  • Denning DW, Elliott J, Keaney M. Temperature-dependent expression of elastase in Aspergillus species. J Med Vet Mycol 1993; 31: 455–458
  • Chang YC, Tsai HF, Karos M, Kwon-Chung KJ. THTA, a thermotolerance gene of Aspergillus fumigatus. Fungal Genet Biol 2004; 41: 888–896
  • Fradin C, Kretschmar M, Nichterlein T, et al. Stage-specific gene expression of Candida albicans in human blood. Mol Microbiol 2003; 47: 1523–1543
  • Huber D, Rustchenko E. Large circular and linear rDNA plasmids in Candida albicans. Yeast 2001; 18: 261–272
  • Rustchenko EP, Curran TM, Sherman F. Variations in the number of ribosomal DNA units in morphological mutants and normal strains of Candida albicans and in normal strains of Saccharomyces cerevisiae. J Bacteriol 1993; 175: 7189–7199
  • Rustchenko EP, Sherman F. Physical constitution of ribosomal genes in common strains of Saccharomyces cerevisiae. Yeast 1994; 10: 1157–1171
  • De Backer MD, Ilyina T, Ma XJ, et al. Genomic profiling of the response of Candida albicans to itraconazole treatment using a DNA microarray. Antimicrob Agents Chemother 2001; 45: 1660–1670
  • Steen BR, Lian T, Zuyderduyn S, et al. Temperature-regulated transcription in the pathogenic fungus Cryptococcus neoformans. Genome Res 2002; 12: 1386–4000
  • Steen BR, Zuyderduyn S, Toffaletti DL, et al. Cryptococcus neoformans gene expression during experimental cryptococcal meningitis. Eukaryot Cell 2003; 2: 1336–1349
  • Toffaletti DL, Del Poeta M, Rude TH, Dietrich F, Perfect JR. Regulation of cytochrome c oxidase subunit 1 (COX1) expression in Cryptococcus neoformans by temperature and host environment. Microbiology 2003; 149: 1041–1049
  • Rude TH, Toffaletti DL, Cox GM, Perfect JR. Relationship of the glyoxylate pathway to the pathogenesis of Cryptococcus neoformans. Infect Immun 2002; 70: 5684–5694
  • Akhter S, McDade HC, Gorlach JM, et al. Role of alternative oxidase gene in pathogenesis of Cryptococcus neoformans. Infect Immun 2003; 71: 5794–5802
  • Bugl H, Fauman EB, Staker BL, et al. RNA methylation under heat shock control. Mol Cell 2000; 6: 349–360
  • Alix JH, Guerin MF. Mutant DnaK chaperones cause ribosome assembly defects in Escherichia coli. Proc Natl Acad Sci USA 1993; 90: 9725–9729
  • El Hage A, Sbai M, Alix JH. The chaperonin GroEL and other heat-shock proteins, besides DnaK, participate in ribosome biogenesis in Escherichia coli. Mol Gen Genet 2001; 264: 796–808
  • Hage AE, Alix JH. Authentic precursors to ribosomal subunits accumulate in Escherichia coli in the absence of functional DnaK chaperone. Mol Microbiol 2004; 51: 189–201
  • Saveanu C, Namane A, Gleizes PE, et al. Sequential protein association with nascent 60S ribosomal particles. Mol Cell Biol 2003; 23: 4449–4460
  • Andersen JS, Lyon CE, Fox AH, et al. Directed proteomic analysis of the human nucleolus. Curr Biol 2002; 12: 1–11
  • Pederson T, Politz JC. The nucleolus and the four ribonucleoproteins of translation. J Cell Biol 2000; 148: 1091–1095
  • Szebeni A, Hingorani K, Negi S, Olson MO. Role of protein kinase CK2 phosphorylation in the molecular chaperone activity of nucleolar protein b23. J Biol Chem 2003; 278: 9107–9015
  • Nollen EA, Salomons FA, Brunsting JF, et al. Dynamic changes in the localization of thermally unfolded nuclear proteins associated with chaperone-dependent protection. Proc Natl Acad Sci USA 2001; 98: 12038–12043
  • Pelham HR. Hsp70 accelerates the recovery of nucleolar morphology after heat shock. Embo J 1984; 3: 3095–3100
  • Chatterjee TK, Fisher RA. Mild heat and proteotoxic stress promote unique subcellular trafficking and nucleolar accumulation of RGS6 and other RGS proteins. Role of the RGS domain in stress-induced trafficking of RGS proteins. J Biol Chem 2003; 278: 30272–30282
  • Welch WJ, Suhan JP. Cellular and biochemical events in mammalian cells during and after recovery from physiological stress. J Cell Biol 1986; 103: 2035–2052
  • Okuwaki M, Matsumoto K, Tsujimoto M, Nagata K. Function of nucleophosmin/B23, a nucleolar acidic protein, as a histone chaperone. FEBS Lett 2001; 506: 272–276
  • Hingorani K, Szebeni A, Olson MO. Mapping the functional domains of nucleolar protein B23. J Biol Chem 2000; 275: 24451–24457
  • Szebeni A, Olson MO. Nucleolar protein B23 has molecular chaperone activities. Protein Sci 1999; 8: 905–912
  • Mirkes PE. Polysomes, ribonucleic acid, and protein synthesis during germination of Neurospora crassa conidia. J Bacteriol 1974; 117: 196–202
  • Brogden KA, Phillips M, Thurston JR, Richard JL. Electron microscopic examination of ribosome preparations from germinated spores of Aspergillus fumigatus. Mycopathologia 1984; 86: 59–64
  • Winther MD SL. RNA synthesis during the germination of conidia of Aspergillus nidulans. Microbios 1981; 30: 153–162
  • Bhabhra R, Miley MD, Mylonakis E, et al. Disruption of the Aspergillus fumigatus gene encoding nucleolar protein CgrA impairs thermotolerant growth and reduces virulence. Infect Immun 2004; 72: 4731–4740
  • Sun J, McFarland M, Boettner D, et al. Cgr1p, a novel nucleolar protein encoded by Saccharomyces cerevisiae orf YGL0292w. Curr Microbiol 2001; 42: 65–69
  • Boettner, Huebner N, Rhodes JC, Askew DS. Molecular cloning of Aspergillus fumigatus CgrA, the ortholog of a conserved fungal nucleolar protein. Med Mycol 2001; 39: 517–521
  • Paisley, D, Robson, GD, Denning, DW. Correlation between in vitro growth rate and in vivo virulence in Aspergillus fumigatus. Med Mycol 2005; in press.
  • Apidianakis Y, Rahme LG, Heitman J, et al. Challenge of Drosophila melanogaster with Cryptococcus neoformans and role of the innate immune response. Eukaryot Cell 2004; 3: 413–419
  • Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996; 86: 973–983
  • Moy TI, Boettner D, Rhodes JC, Silver PA, Askew DS. Identification of a role for Saccharomyces cerevisiae Cgr1p in pre-rRNA processing and 60S ribosome subunit synthesis. Microbiology 2002; 148: 1081–1090
  • Planta RJ. Regulation of ribosome synthesis in yeast. Yeast 1997; 13: 1505–1518
  • Warner JR. The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 1999; 24: 437–440
  • Fromont-Racine M, Senger B, Saveanu C, Fasiolo F. Ribosome assembly in eukaryotes. Gene 2003; 313: 17–42
  • Granneman S, Baserga SJ. Ribosome biogenesis: of knobs and RNA processing. Exp Cell Res 2004; 296: 43–50

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.