84
Views
9
CrossRef citations to date
0
Altmetric
Experimental in vivo systems

The contribution of animal models of aspergillosis to understanding pathogenesis, therapy and virulence

&
Pages 101-110 | Published online: 09 Jul 2009

References

  • Latge JP. Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev 1999; 12: 310–350
  • Steinbach WJ, Stevens DA, Denning DW, Moss RB. Advances against aspergillosis. Clin Infect Dis 2003; 37(Suppl 3)S155–156
  • Steinbach WJ, Stevens DA. Review of newer antifungal and immunomodulatory strategies for invasive aspergillosis. Clin Infect Dis 2003; 37(Suppl 3)S157–187
  • Stevens DA, Moss RB, Kurup VP, et al. Allergic bronchopulmonary aspergillosis in cystic fibrosis – state of the art: Cystic Fibrosis Foundation Consensus Conference. Clin Infect Dis 2003; 37(Suppl 3)S225–264
  • Ghori HM, Edgar SA. Comparative susceptibility and effect of mild Aspergillus fumigatus infection on three strains of chickens. Poult Sci 1979; 58: 14–17
  • Ghori HM, Edgar SA. Comparative susceptibility of chickens, turkeys and Coturnix quail to aspergillosis. Poult Sci 1973; 52: 2311–2315
  • Chaudhary B, Singh B. Pathogenicity of Aspergillus fumigatus in chicks, guinea fowl, rabbits and mice. Mykosen 1983; 26: 421–429
  • Chaudhary SK, Sadana JR, Pruthi AK. Sequential pathological studies in Japanese quails infected experimentally with Aspergillus fumigatus. Mycopathologia 1988; 103: 157–166
  • Richard JL, Thurston JR. Rapid hematogenous dissemination of Aspergillus fumigatus and A. flavus spores in turkey poults following aerosol exposure. Avian Dis 1983; 27: 1025–1033
  • Kunkle RA, Rimler RB. Pathology of acute aspergillosis in turkeys. Avian Dis 1996; 40: 875–886
  • Kunkle RA, Rimler RB. Early pulmonary lesions in turkeys produced by nonviable Aspergillus fumigatus and/or Pasteurella multocida lipopolysaccharide. Avian Dis 1998; 42: 770–780
  • Pandita A, Sadana JR, Asrani RK. Studies on clinical signs and haematological alterations in pneumonic aspergillosis due to Aspergillus flavus in Japanese quail. Mycopathologia 1991; 116: 119–123
  • Peden WM, Rhoades KR. Pathogenicity differences of multiple isolates of Aspergillus fumigatus in turkeys. Avian Dis 1992; 36: 537–542
  • Richard JL, Pier AC, Cysewski SJ, Graham CK. Effect of aflatoxin and aspergillosis on turkey poults. Avian Dis 1973; 17: 111–121
  • Richard JL, Peden WM, Williams PP. Gliotoxin inhibits transformation and is cytotoxic to turkey peripheral blood lymphocytes. Mycopathologia 1994; 126: 109–114
  • Dyar PM, Fletcher OJ, Page RK. Aspergillosis in turkeys associated with use of contaminated litter. Avian Dis 1984; 28: 250–255
  • Hamet N, Seigle-Murandi F, Steiman R. Contribution to the prophylaxis of chicks aspergillosis: study of the contamination of a hatchery by Aspergillus fumigatus. Zentralbl Veterinarmed B 1991; 38: 529–537
  • Graczyk TK, Cranfield MR, Klein PN. Value of antigen and antibody detection, and blood evaluation parameters in diagnosis of avian invasive aspergillosis. Mycopathologia 1997; 140: 121–127
  • Graczyk TK, Cranfield MR. A model for the prediction of relative titres of avian malaria and Aspergillus spp. IgG in Jackass penguin (Spheniscus demersus) females based on maternal IgG in egg-yolk. Int J Parasitol 1996; 26: 749–754
  • Katz ME, Love SC, Gill HS, Cheetham BF. Development of a method for the identification, using the polymerase chain reaction, of Aspergillus fumigatus isolated from ostriches. Aust Vet J 1996; 74: 50–54
  • Katz ME, McLoon M, Burrows S, Cheetham BF. Extreme DNA sequence variation in isolates of Aspergillus fumigatus. FEMS Immunol Med Microbiol 1998; 20: 283–288
  • Chute HL. Characteristics of immunity in fungal infections. Am J Vet Res 1975; 36: 601–602
  • Taylor JJ, Burroughs EJ. Experimental avian aspergillosis. Mycopathol Mycol Appl 1973; 51: 131–141
  • Martinez-Quesada J, Nieto-Cadenazzi A, Torres-Rodriguez JM. Humoral immunoresponse of pigeons to Aspergillus fumigatus antigens. Mycopathologia 1993; 124: 131–137
  • Graczyk TK, Cranfield MR. Maternal transfer of anti-Aspergillus spp. immunoglobulins in African black-footed penguins (Spheniscus demersus). J Wildl Dis 1995; 31: 545–549
  • Richard JL, Thurston JR, Cutlip RC, Pier AC. Vaccination studies of aspergillosis in turkeys: subcutaneous inoculation with several vaccine preparations followed by aerosol challenge exposure. Am J Vet Res 1982; 43: 488–492
  • Richard JL, Thurston JR, Peden WM, Pinello C. Recent studies on aspergillosis in turkey poults. Mycopathologia 1984; 87: 3–11
  • Richard JL, Peden WM, Sacks JM. Effects of adjuvant-augmented germling vaccines in turkey poults challenged with Aspergillus fumigatus. Avian Dis 1991; 35: 93–99
  • Schmidt A. Animal models of aspergillosis – also useful for vaccination strategies?. Mycoses 2002; 45: 38–40
  • Van Cutsem J, Van Gerven F, Janssen PA. Oral and parenteral therapy with saperconazole (R 66905) of invasive aspergillosis in normal and immunocompromised animals. Antimicrob Agents Chemother 1989; 33: 2063–2068
  • Van Cutsem J. Antifungal activity of enilconazole on experimental aspergillosis in chickens. Avian Dis 1983; 27: 36–42
  • Van Cutsem J. Oral, topical and parenteral antifungal treatment with itraconazole in normal and in immunocompromised animals. Mycoses 1989; 32(Suppl 1)14–34
  • Kirkpatrick WR, McAtee RK, Fothergill AW, Rinaldi MG, Patterson TF. Efficacy of voriconazole in a guinea pig model of disseminated invasive aspergillosis. Antimicrob Agents Chemother 2000; 44: 2865–2868
  • Kirkpatrick WR, Perea S, Coco BJ, Patterson TF. Efficacy of caspofungin alone and in combination with voriconazole in a guinea pig model of invasive aspergillosis. Antimicrob Agents Chemother 2002; 46: 2564–2568
  • Martin MV, Yates J, Hitchcock CA. Comparison of voriconazole (UK-109,496) and itraconazole in prevention and treatment of Aspergillus fumigatus endocarditis in guinea pigs. Antimicrob Agents Chemother 1997; 41: 13–16
  • Reichard U, Monod M, Odds F, Ruchel R. Virulence of an aspergillopepsin-deficient mutant of Aspergillus fumigatus and evidence for another aspartic proteinase linked to the fungal cell wall. J Med Vet Mycol 1997; 35: 189–196
  • Walsh TJ, Petraitis V, Petraitiene R, et al. Experimental pulmonary aspergillosis due to Aspergillus terreus: pathogenesis and treatment of an emerging fungal pathogen resistant to amphotericin B. J Infect Dis 2003; 188: 305–319
  • Polak A. Experimental models in antifungal chemotherapy. Mycoses 1998; 41: 1–30
  • Oji EO. Ketoconazole: a new imidazole antifungal agent has both prophylactic potential and therapeutic efficacy in keratomycosis of rabbits. Int Ophthalmol 1982; 5: 163–167
  • O'Day DM. Orally administered antifungal therapy for experimental keratomycosis. Trans Am Ophthalmol Soc 1990; 88: 685–725
  • O'Day DM, Head WS, Robinson RD, Williams TE, Gedde S. The evaluation of therapeutic responses in experimental keratomycosis. Curr Eye Res 1992; 11: 35–44
  • Komadina TG, Wilkes TD, Shock JP, et al. Treatment of Aspergillus fumigatus keratitis in rabbits with oral and topical ketoconazole. Am J Ophthalmol 1985; 99: 476–479
  • Avunduk AM, Beuerman RW, Warnel ED, Kaufman HE, Greer D. Comparison of efficacy of topical and oral fluconazole treatment in experimental Aspergillus keratitis. Curr Eye Res 2003; 26: 113–117
  • O'Day DM, Ray WA, Head WS, Robinson RD, Williams TE. Influence of corticosteroid on experimentally induced keratomycosis. Arch Ophthalmol 1991; 109: 1601–1604
  • Bartroli J, Turmo E, Alguero M, et al. New azole antifungals. 3. Synthesis and antifungal activity of 3-substituted-4(3H)-quinazolinones. J Med Chem 1998; 41: 1869–1882
  • Kirkpatrick WR, McAtee RK, Fothergill AW, et al. Efficacy of SCH56592 in a rabbit model of invasive aspergillosis. Antimicrob Agents Chemother 2000; 44: 780–782
  • Mylonakis E, Chalevelakis G, Saroglou G, et al. Efficacy of deoxycholate amphotericin B and unilamellar liposomal amphotericin B in prophylaxis of experimental Aspergillus fumigatus endocarditis. Mayo Clin Proc 1997; 72: 1022–1027
  • O'Sullivan CE, Kasai M, Francesconi A, et al. Development and validation of a quantitative real-time PCR assay using fluorescence resonance energy transfer technology for detection of Aspergillus fumigatus in experimental invasive pulmonary aspergillosis. J Clin Microbiol 2003; 41: 5676–5682
  • Patterson TF, Miniter P, Andriole VT. Efficacy of fluconazole in experimental invasive aspergillosis. Rev Infect Dis 1990; 12(Suppl 3)S281–285
  • Patterson TF, George D, Miniter P, Andriole VT. The role of fluconazole in the early treatment and prophylaxis of experimental invasive aspergillosis. J Infect Dis 1991; 164: 575–580
  • Patterson TF, George D, Miniter P, Andriole VT. Saperconazole therapy in a rabbit model of invasive aspergillosis. Antimicrob Agents Chemother 1992; 36: 2681–2685
  • Petraitiene R, Petraitis V, Groll AH, et al. Antifungal activity and pharmacokinetics of posaconazole (SCH 56592) in treatment and prevention of experimental invasive pulmonary aspergillosis: correlation with galactomannan antigenemia. Antimicrob Agents Chemother 2001; 45: 857–869
  • Petraitiene R, Petraitis V, Groll AH, et al. Antifungal efficacy of caspofungin (MK-0991) in experimental pulmonary aspergillosis in persistently neutropenic rabbits: pharmacokinetics, drug disposition, and relationship to galactomannan antigenemia. Antimicrob Agents Chemother 2002; 46: 12–23
  • Petraitis V, Petraitiene R, Sarafandi AA, et al. Combination therapy in treatment of experimental pulmonary aspergillosis: synergistic interaction between an antifungal triazole and an echinocandin. J Infect Dis 2003; 187: 1834–1843
  • Roberts J, Schock K, Marino S, Andriole VT. Efficacies of two new antifungal agents, the triazole ravuconazole and the echinocandin LY-303366, in an experimental model of invasive aspergillosis. Antimicrob Agents Chemother 2000; 44: 3381–3388
  • Berenguer J, Ali NM, Allende MC, et al. Itraconazole for experimental pulmonary aspergillosis: comparison with amphotericin B, interaction with cyclosporin A, and correlation between therapeutic response and itraconazole concentrations in plasma. Antimicrob Agents Chemother 1994; 38: 1303–1308
  • George D, Kordick D, Miniter P, Patterson TF, Andriole VT. Combination therapy in experimental invasive aspergillosis. J Infect Dis 1993; 168: 692–698
  • George D, Miniter P, Andriole VT. Efficacy of UK-109496, a new azole antifungal agent, in an experimental model of invasive aspergillosis. Antimicrob Agents Chemother 1996; 40: 86–91
  • Groll AH. Itraconazole – perspectives for the management of invasive aspergillosis. Mycoses 2002; 45(Suppl 3)48–55
  • Patterson TF, Fothergill AW, Rinaldi MG. Efficacy of itraconazole solution in a rabbit model of invasive aspergillosis. Antimicrob Agents Chemother 1993; 37: 2307–2310
  • Petraitiene R, Petraitis V, Lyman CA, et al. Efficacy, safety, and plasma pharmacokinetics of escalating dosages of intravenously administered ravuconazole lysine phosphoester for treatment of experimental pulmonary aspergillosis in persistently neutropenic rabbits. Antimicrob Agents Chemother 2004; 48: 1188–1196
  • Petraitis V, Petraitiene R, Groll AH, et al. Antifungal efficacy, safety, and single-dose pharmacokinetics of LY303366, a novel echinocandin B, in experimental pulmonary aspergillosis in persistently neutropenic rabbits. Antimicrob Agents Chemother 1998; 42: 2898–2905
  • Petraitis V, Petraitiene R, Groll AH, et al. Comparative antifungal activities and plasma pharmacokinetics of micafungin (FK463) against disseminated candidiasis and invasive pulmonary aspergillosis in persistently neutropenic rabbits. Antimicrob Agents Chemother 2002; 46: 1857–1869
  • Allende MC, Lee JW, Francis P, et al. Dose-dependent antifungal activity and nephrotoxicity of amphotericin B colloidal dispersion in experimental pulmonary aspergillosis. Antimicrob Agents Chemother 1994; 38: 518–522
  • Berenguer J, Allende MC, Lee JW, et al. Pathogenesis of pulmonary aspergillosis. Granulocytopenia versus cyclosporine and methylprednisolone-induced immunosuppression. Am J Respir Crit Care Med 1995; 152: 1079–1086
  • Walsh TJ, Garrett K, Feurerstein E, et al. Therapeutic monitoring of experimental invasive pulmonary aspergillosis by ultrafast computerized tomography, a novel, noninvasive method for measuring responses to antifungal therapy. Antimicrob Agents Chemother 1995; 39: 1065–1069
  • Andrews CP, Weiner MH. Immunodiagnosis of invasive pulmonary aspergillosis in rabbits. Fungal antigen detected by radioimmunoassay in bronchoalveolar lavage fluid. Am Rev Respir Dis 1981; 124: 60–64
  • Loeffler J, Kloepfer K, Hebart H, et al. Polymerase chain reaction detection of Aspergillus DNA in experimental models of invasive aspergillosis. J Infect Dis 2002; 185: 1203–1206
  • Marr KA, Balajee SA, McLaughlin L, et al. Detection of galactomannan antigenemia by enzyme immunoassay for the diagnosis of invasive aspergillosis: variables that affect performance. J Infect Dis 2004; 190: 641–649
  • Chiller TM, Capilla Luque J, Sobel RA, et al. Development of a murine model of cerebral aspergillosis. J Infect Dis 2002; 186: 574–577
  • Chiller TM, Sobel RA, Capilla Luque J, Clemons KV, Stevens DA. Efficacy of amphotericin B or itraconazole in a murine model of central nervous system Aspergillus infection. Antimicrob Agents Chemother 2003; 47: 813–815
  • Kumar R. Mild, moderate, and severe forms of allergic bronchopulmonary aspergillosis: a clinical and serologic evaluation. Chest 2003; 124: 890–892
  • Kurup VP, Choi H, Resnick A, Kalbfleisch J, Fink JN. Immunopathological response of C57BL/6 and C3H/HeN mice to Aspergillus fumigatus antigens. Int Arch Allergy Appl Immunol 1990; 91: 145–154
  • Kurup VP, Hari V, Guo J, et al. Aspergillus fumigatus peptides differentially express Th1 and Th2 cytokines. Peptides 1996; 17: 183–190
  • Kurup VP, Grunig G. Animal models of allergic bronchopulmonary aspergillosis. Mycopathologia 2002; 153: 165–177
  • Grunig G, Corry DB, Leach MW, et al. Interleukin-10 is a natural suppressor of cytokine production and inflammation in a murine model of allergic bronchopulmonary aspergillosis. J Exp Med 1997; 185: 1089–1099
  • Smith GR. Experimental aspergillosis in mice: aspects of resistance. J Hyg (Lond) 1972; 70: 741–754
  • Williams DM, Weiner MH, Drutz DJ. Immunologic studies of disseminated infection with Aspergillus fumigatus in the nude mouse. J Infect Dis 1981; 143: 726–733
  • Hector RF, Yee E, Collins MS. Use of DBA/2N mice in models of systemic candidiasis and pulmonary and systemic aspergillosis. Infect Immun 1990; 58: 1476–1478
  • Mondon P, De Champs C, Donadille A, Ambroise-Thomas P, Grillot R. Variation in virulence of Aspergillus fumigatus strains in a murine model of invasive pulmonary aspergillosis. J Med Microbiol 1996; 45: 186–191
  • Mondon P, Thelu J, Lebeau B, Ambroise-Thomas P, Grillot R. Virulence of Aspergillus fumigatus strains investigated by random amplified polymorphic DNA analysis. J Med Microbiol 1995; 42: 299–303
  • Hanson LH, Clemons KV, Denning DW, Stevens DA. Efficacy of oral saperconazole in systemic murine aspergillosis. J Med Vet Mycol 1995; 33: 311–317
  • Clemons KV, Grunig G, Sobel RA, et al. Role of IL-10 in invasive aspergillosis: increased resistance of IL-10 gene knockout mice to lethal systemic aspergillosis. Clin Exp Immunol 2000; 122: 186–191
  • Clemons KV, Miller TK, Selitrennikoff CP, Stevens DA. fos-1, a putative histidine kinase as a virulence factor for systemic aspergillosis. Med Mycol 2002; 40: 259–262
  • Dixon DM, Polak A, Walsh TJ. Fungus dose-dependent primary pulmonary aspergillosis in immunosuppressed mice. Infect Immun 1989; 57: 1452–1456
  • Bartroli J, Turmo E, Alguero M, et al. New azole antifungals. 2. Synthesis and antifungal activity of heterocyclecarboxamide derivatives of 3-amino-2-aryl-1-azolyl-2-butanol. J Med Chem 1998; 41: 1855–1868
  • Schaude M, Petranyi G, Ackerbauer H, Meingassner JG, Mieth H. Preclinical antimycotic activity of SDZ 89-485: a new orally and topically effective triazole. J Med Vet Mycol 1990; 28: 445–454
  • Clemons KV, Sobel RA, Stevens DA. Toxicity of LY303366, an echinocandin antifungal, in mice pretreated with glucocorticoids. Antimicrobial Agents and Chemotherapy 2000; 44: 378–381
  • Denning DW, Hall L, Jackson M, Hollis S. Efficacy of D0870 compared with those of itraconazole and amphotericin B in two murine models of invasive aspergillosis. Antimicrob Agents Chemother 1995; 39: 1809–1814
  • Hata K, Kimura J, Miki H, et al. Efficacy of ER-30346, a novel oral triazole antifungal agent, in experimental models of aspergillosis, candidiasis, and cryptococcosis. Antimicrob Agents Chemother 1996; 40: 2243–2247
  • Hector RF, Zimmer BL, Pappagianis D. Evaluation of nikkomycins X and Z in murine models of coccidioidomycosis, histoplasmosis, and blastomycosis. Antimicrob Agents Chemother 1990; 34: 587–593
  • Kamai Y, Harasaki T, Fukuoka T, et al. In vitro and in vivo activities of CS-758 (R-120758), a new triazole antifungal agent. Antimicrob Agents Chemother 2002; 46: 367–370
  • Niwano Y, Kuzuhara N, Goto Y, et al. Efficacy of NND-502, a novel imidazole antimycotic agent, in experimental models of Candida albicans and Aspergillus fumigatus infections. Int J Antimicrob Agents 1999; 12: 221–228
  • Salama SM, Atwal H, Gandhi A, et al. In vitro and in vivo activities of syn2836, syn2869, syn2903, and syn2921: new series of triazole antifungal agents. Antimicrob Agents Chemother 2001; 45: 2420–2426
  • Graybill JR, Bocanegra R, Najvar LK, Loebenberg D, Luther MF. Granulocyte colony-stimulating factor and azole antifungal therapy in murine aspergillosis: role of immune suppression. Antimicrob Agents Chemother 1998; 42: 2467–2473
  • Capilla Luque J, Clemons KV, Stevens DA. Efficacy of micafungin alone or in combination against systemic murine aspergillosis. Antimicrob Agents Chemother 2003; 47: 1452–1455
  • Graybill JR, Bocanegra R, Gonzalez GM, Najvar LK. Combination antifungal therapy of murine aspergillosis: liposomal amphotericin B and micafungin. J Antimicrob Chemother 2003; 52: 656–662
  • Sionov E, Segal E. Polyene and cytokine treatment of experimental aspergillosis. FEMS Immunol Med Microbiol 2003; 39: 221–227
  • Warn PA, Morrissey G, Morrissey J, Denning DW. Activity of micafungin (FK463) against an itraconazole-resistant strain of Aspergillus fumigatus and a strain of Aspergillus terreus demonstrating in vivo resistance to amphotericin B. J Antimicrob Chemother 2003; 51: 913–919
  • Allen SD, Sorensen KN, Nejdl MJ, Durrant C, Proffit RT. Prophylactic efficacy of aerosolized liposomal (AmBisome) and non-liposomal (Fungizone) amphotericin B in murine pulmonary aspergillosis. J Antimicrob Chemother 1994; 34: 1001–1013
  • BitMansour A, Brown JM. Prophylactic administration of liposomal amphotericin B is superior to treatment in a murine model of invasive aspergillosis after hematopoietic cell transplantation. J Infect Dis 2002; 186: 134–137
  • Verweij PE, Oakley KL, Morrissey J, Morrissey G, Denning DW. Efficacy of LY 303366 against amphotericin B-susceptible and -resistant Aspergillus fumigatus in a murine model of invasive aspergillosis. Antimicrob Agents Chemother 1998; 42: 873–878
  • Swenson CE, Perkins WR, Roberts P, et al. In vitro and in vivo antifungal activity of amphotericin B lipid complex: are phospholipases important?. Antimicrob Agents Chemother 1998; 42: 767–771
  • Bowman JC, Abruzzo GK, Anderson JW, et al. Quantitative PCR assay to measure Aspergillus fumigatus burden in a murine model of disseminated aspergillosis: demonstration of efficacy of caspofungin acetate. Antimicrob Agents Chemother 2001; 45: 3474–3481
  • Dannaoui E, Borel E, Persat F, Monier MF, Piens MA. In vivo itraconazole resistance of Aspergillus fumigatus in systemic murine aspergillosis. EBGA Network. European research group on Biotypes and Genotypes of Aspergillus fumigatus. J Med Microbiol 1999; 48: 1087–1093
  • Dannaoui E, Borel E, Persat F, Piens MA, Picot S. Amphotericin B resistance of Aspergillus terreus in a murine model of disseminated aspergillosis. J Med Microbiol 2000; 49: 601–606
  • Denning DW, Venkateswarlu K, Oakley KL, et al. Itraconazole resistance in Aspergillus fumigatus. Antimicrob Agents Chemother 1997; 41: 1364–1368
  • Fujie A, Iwamoto T, Muramatsu H, et al. FR901469, a novel antifungal antibiotic from an unidentified fungus No.11243. II. In vitro and in vivo activities. J Antibiot (Tokyo) 2000; 53: 920–927
  • Johnson EM, Oakley KL, Radford SA, et al. Lack of correlation of in vitro amphotericin B susceptibility testing with outcome in a murine model of Aspergillus infection. J Antimicrob Chemother 2000; 45: 85–93
  • Mosquera J, Warn PA, Morrissey J, et al. Susceptibility testing of Aspergillus flavus: inoculum dependence with itraconazole and lack of correlation between susceptibility to amphotericin B in vitro and outcome in vivo. Antimicrob Agents Chemother 2001; 45: 1456–1462
  • Clemons KV, Stevens DA. Comparative efficacies of four amphotericin B formulations – Fungizone, Amphotec (Amphocil), AmBisome, and Abelcet – against systemic murine aspergillosis. Antimicrob Agents Chemother 2004; 48: 1047–1050
  • Polak A. Oxiconazole, a new imidazole derivative. Evaluation of antifungal activity in vitro and in vivo. Arzneimittelforschung 1982; 32: 17–24
  • Polak A, Scholer HJ, Wall M. Combination therapy of experimental candidiasis, cryptococcosis and aspergillosis in mice. Chemotherapy 1982; 28: 461–479
  • Plempel M. Antimycotic activity of BAY N 7133 in animal experiments. J Antimicrob Chemother 1984; 13: 447–463
  • Clemons, KV, Stevens, DA. Efficacy of micafungin alone or in combination against experimental pulmonary aspergillosis. Focus on Fungal Infections: 12, Phoenix, 2002. Abstract no. 10.
  • Tomee JF, Kauffman HF. Putative virulence factors of Aspergillus fumigatus. Clin Exp Allergy 2000; 30: 476–484
  • Blanco JL, Hontecillas R, Bouza E, et al. Correlation between the elastase activity index and invasiveness of clinical isolates of Aspergillus fumigatus. J Clin Microbiol 2002; 40: 1811–1813
  • Frosco MB, Chase T, Jr, Macmillan JD. The effect of elastase-specific monoclonal and polyclonal antibodies on the virulence of Aspergillus fumigatus in immunocompromised mice. Mycopathologia 1994; 125: 65–76
  • Holden DW, Tang CM, Smith JM. Molecular genetics of pathogenicity. Ant van Leeuwen 1994; 65: 251–255
  • Iadarola P, Lungarella G, Martorana PA, et al. Lung injury and degradation of extracellular matrix components by Aspergillus fumigatus serine proteinase. Exp Lung Res 1998; 24: 233–251
  • Kolattukudy PE, Lee JD, Rogers LM, et al. Evidence for possible involvement of an elastolytic serine protease in aspergillosis. Infect Immun 1993; 61: 2357–2368
  • Kothary MH, Chase T, Jr, Macmillan JD. Correlation of elastase production by some strains of Aspergillus fumigatus with ability to cause pulmonary invasive aspergillosis in mice. Infect Immun 1984; 43: 320–325
  • Bouchara JP, Tronchin G, Larcher G, Chabasse D. The search for virulence determinants in Aspergillus fumigatus. Trends Microbiol 1995; 3: 327–330
  • Kauffman HF. Immunopathogenesis of allergic bronchopulmonary aspergillosis and airway remodeling. Front Biosci 2003; 8: 190–196
  • Reichard U, Cole GT, Hill TW, Ruchel R, Monod M. Molecular characterization and influence on fungal development of ALP2, a novel serine proteinase from Aspergillus fumigatus. Int J Med Microbiol 2000; 290: 549–558
  • Ruchel R. Proteinases of pathogenic fungi. Mycoses 1999; 42(Suppl 1)48–52
  • Chang YC, Segal BH, Holland SM, Miller GF, Kwon-Chung KJ. Virulence of catalase-deficient Aspergillus nidulans in p47(phox)-/- mice. Implications for fungal pathogenicity and host defense in chronic granulomatous disease. J Clin Invest 1998; 101: 1843–1850
  • Kawasaki L, Wysong D, Diamond R, Aguirre J. Two divergent catalase genes are differentially regulated during Aspergillus nidulans development and oxidative stress. J Bacteriol 1997; 179: 3284–3292
  • Paris S, Wysong D, Debeaupuis JP, et al. Catalases of Aspergillus fumigatus. Infect Immun 2003; 71: 3551–3562
  • Takeuchi A, Miyamoto T, Yamaji K, et al. A human erythrocyte-derived growth-promoting factor with a wide target cell spectrum: identification as catalase. Cancer Res 1995; 55: 1586–1589
  • Ghannoum MA. Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev 2000; 13: 122–143
  • Iwata K. Fungal toxins as a parasitic factor responsible for the establishment of fungal infections. Mycopathologia 1978; 65: 141–154
  • Hogan LH, Klein BS, Levitz SM. Virulence factors of medically important fungi. Clin Microbiol Rev 1996; 9: 469–488
  • Kamei K, Watanabe A, Nishimura K, Miyaji M. Cytotoxicity of Aspergillus fumigatus culture filtrate against macrophages. Nippon Ishinkin Gakkai Zasshi 2002; 43: 37–41
  • Pugliese A, Savarino A, Vidotto V, Cantamessa C, Pescarmona GP. Effect of Aspergillus terreus mycotoxins on nitric oxide synthase activity in human erythroid K-562 cells. Cell Biochem Funct 1999; 17: 35–45
  • Wasylnka JA, Simmer MI, Moore MM. Differences in sialic acid density in pathogenic and non-pathogenic Aspergillus species. Microbiology 2001; 147: 869–877
  • Mendes-Giannini MJ, Taylor ML, Bouchara JB, et al. Pathogenesis II: fungal responses to host responses: interaction of host cells with fungi. Med Mycol 2000; 38(Suppl 1)113–123
  • Morschhauser J, Kohler G, Hacker J. Are there pathogenicity factors in fungi?. Mycoses 1996; 39(Suppl 1)51–54
  • Lamy B, Moutaouakil M, Latge JP, Davies J. Secretion of a potential virulence factor, a fungal ribonucleotoxin, during human aspergillosis infections. Mol Microbiol 1991; 5: 1811–1815
  • Smith JM, Davies JE, Holden DW. Construction and pathogenicity of Aspergillus fumigatus mutants that do not produce the ribotoxin restrictocin. Mol Microbiol 1993; 9: 1071–1077
  • Perez-Canadillas JM, Santoro J, Campos-Olivas R, et al. The highly refined solution structure of the cytotoxic ribonuclease alpha-sarcin reveals the structural requirements for substrate recognition and ribonucleolytic activity. J Mol Biol 2000; 299: 1061–1073
  • Kao R, Davies J. Fungal ribotoxins: a family of naturally engineered targeted toxins?. Biochem Cell Biol 1995; 73: 1151–1159
  • Ikegami Y, Amitani R, Murayama T, et al. Effects of alkaline protease or restrictocin deficient mutants of Aspergillus fumigatus on human polymorphonuclear leukocytes. Eur Respir J 1998; 12: 607–611
  • Langfelder K, Jahn B, Gehringer H, et al. Identification of a polyketide synthase gene (pksP) of Aspergillus fumigatus involved in conidial pigment biosynthesis and virulence. Med Microbiol Immunol (Berl) 1998; 187: 79–89
  • Jahn B, Boukhallouk F, Lotz J, et al. Interaction of human phagocytes with pigmentless Aspergillus conidia. Infect Immun 2000; 68: 3736–3739
  • Jahn B, Koch A, Schmidt A, et al. Isolation and characterization of a pigmentless-conidium mutant of Aspergillus fumigatus with altered conidial surface and reduced virulence. Infect Immun 1997; 65: 5110–5117
  • Du C, Li R, Ma S, Wang D. Cloning of Aspergillus fumigatus histidine kinase gene fragment and its expression during invasive infection. Mycopathologia 2002; 153: 5–10
  • Brown JS, Aufauvre-Brown A, Brown J, et al. Signature-tagged and directed mutagenesis identify PABA synthetase as essential for Aspergillus fumigatus pathogenicity. Mol Microbiol 2000; 36: 1371–1380
  • Sandhu DK, Sandhu RS, Khan ZU, Damodaran VN. Conditional virulence of a p-aminobenzoic acid-requiring mutant of Aspergillus fumigatus. Infect Immun 1976; 13: 527–532
  • Tang CM, Smith JM, Arst HN, Jr, Holden DW. Virulence studies of Aspergillus nidulans mutants requiring lysine or p- aminobenzoic acid in invasive pulmonary aspergillosis. Infect Immun 1994; 62: 5255–5260
  • Purnell DM, Martin GM. Heterozygous diploid strains of Aspergillus nidulans: enhanced virulence for mice in comparison to a prototrophic haploid strain. Mycopathol Mycol Appl 1973; 49: 307–319
  • Purnell DM. The histopathologic response of mice to Aspergillus nidulans: comparison between genetically defined haploid and diploid strains of different virulence. Drugs 1974; 7: 95–104
  • Purnell DM. Virulence genetics of Aspergillus nidulans Eidam: a review. Mycopathologia 1978; 65: 177–182
  • Smith JM, Tang CM, Van Noorden S, Holden DW. Virulence of Aspergillus fumigatus double mutants lacking restriction and an alkaline protease in a low-dose model of invasive pulmonary aspergillosis. Infect Immun 1994; 62: 5247–5254
  • Tang CM, Cohen J, Krausz T, Van Noorden S, Holden DW. The alkaline protease of Aspergillus fumigatus is not a virulence determinant in two murine models of invasive pulmonary aspergillosis. Infect Immun 1993; 61: 1650–1656
  • Monod M, Paris S, Sarfati J, et al. Virulence of alkaline protease-deficient mutants of Aspergillus fumigatus. FEMS Microbiol Lett 1993; 80: 39–46
  • Aufauvre-Brown A, Mellado E, Gow NA, Holden DW. Aspergillus fumigatus chsE: a gene related to CHS3 of Saccharomyces cerevisiae and important for hyphal growth and conidiophore development but not pathogenicity. Fungal Genet Biol 1996; 21: 141–152
  • Cenci E, Mencacci A, Del Sero G, et al. Interleukin-4 causes susceptibility to invasive pulmonary aspergillosis through suppression of protective type I responses. J Infect Dis 1999; 180: 1957–1968
  • Cenci E, Mencacci A, Fe d'Ostiani C, et al. Cytokine- and T helper-dependent lung mucosal immunity in mice with invasive pulmonary aspergillosis. J Infect Dis 1998; 178: 1750–1760
  • Cenci, E, Mencacci, A, Fe d'Ostiani, C, , et al. Cytokine- and T-helper-dependent immunity in murine aspergillosis. Res Immunol 1998; 149: 445–454; discussion 504–505.
  • Cenci E, Mencacci A, Casagrande A, et al. Impaired antifungal effector activity but not inflammatory cell recruitment in interleukin-6-deficient mice with invasive pulmonary aspergillosis. J Infect Dis 2001; 184: 610–617
  • Ezekowitz RA. Update on chronic granulomatous disease: the concept of the near-normal host. Curr Clin Top Infect Dis 2000; 20: 325–334
  • Aratani Y, Kura F, Watanabe H, et al. Relative contributions of myeloperoxidase and NADPH-oxidase to the early host defense against pulmonary infections with Candida albicans and Aspergillus fumigatus. Med Mycol 2002; 40: 557–563
  • Morgenstern DE, Gifford MA, Li LL, Doerschuk CM, Dinauer MC. Absence of respiratory burst in X-linked chronic granulomatous disease mice leads to abnormalities in both host defense and inflammatory response to Aspergillus fumigatus. J Exp Med 1997; 185: 207–218
  • Philippe B, Ibrahim-Granet O, Prevost MC, et al. Killing of Aspergillus fumigatus by alveolar macrophages is mediated by reactive oxidant intermediates. Infect Immun 2003; 71: 3034–3042

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.