47
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Identification of genomic differences between Cryptococcus neoformans and Cryptococcus gattii by Representational Difference Analysis (RDA)

, , , , &
Pages 584-591 | Received 04 Apr 2008, Published online: 01 Sep 2009

References

  • Kwon-Chung KJ, Boekhout T, Fell JW, Diaz M. Proposal to conserve the name Cryptococcus gattii against C. hondurianus and C. bacillisporus (Basidiomycota, Hymenomycetes,Tremenomycetidae). Taxon 2002; 51: 804–806
  • Okabayashi K, Kano R, Watanabe S, Hasegawal A. Expression of capsule-associated genes of Cryptococcus neoformans. Mycopathologia 2005; 160: 1–7
  • Latouche GN, Sorrell TC, Meyer W. Isolation and characterization of the phospholipase B gene of Cryptococcus neoformans var. gattii. FEMS Yeast Res 2002; 2: 551–561
  • Cox GM, McDade HC, Chen SC, et al. Extracellular phospholipase activity is a virulence factor for Cryptococcus neoformans. Mol Microbiol 2001; 39: 166–175
  • Cox GM, Mukherjee J, Cole GT, Casadevall A, Perfect JR. Urease as a virulence factor in experimental cryptococcosis. Infect Immun 2000; 68: 443–448
  • Casadevall A, Perfect JR. Cryptococcus neoformans. The American Society for Microbiology, Washington, DC 1998
  • Kidd SE, Bach PJ, Hingston AO, et al. Cryptococcus gattii dispersal mechanism, British Columbia, Canada. Emerg Infect Dis 2007; 13: 51–57
  • Kidd SE, Hagen F, Tscharke RL, et al. A rare genotype of Cryptococcus gattii caused the cryptococcosis outbreak on Vancouver Island (British Columbia, Canada). Proc Natl Acad Sci USA 2004; 101: 17258–17263
  • MacDougall L, Fyfe M. Emergence of Cryptococcus gattii in a novel environment provides clues to its incubation period. J Clin Microbiol 2006; 44: 1851–1852
  • Hoang LM, Maguire JA, Doyle P, Fyfe M, Roscoe DL. Cryptococcus neoformans infections at Vancouver Hospital and Health Sciences Centre (1997–2002):Epidemiology, microbiology and histopathology. J Med Microbiol 2004; 53: 935–940
  • Sorrell TC. Cryptococcus neoformans variety gattii. Med Mycol 2001; 39: 155–168
  • Meyer W, Castañeda A, Jackson S, et al. Molecular typing of iberoamerican Cryptococcus neoformans isolates. Emerg Infect Dis 2003; 9: 189–195
  • Litvintseva AP, Thakur R, Vilgalys R, Mitchell TG. Multilocus sequence typing reveals three genetic subpopulations of Cryptococcus neoformans var. grubii (serotype A), including a unique population in Botswana. Genetics 2006; 172: 2223–2238
  • Boekhout T, Theelen B, Diaz M, et al. Hybrid genotypes in the pathogenic yeast Cryptococcus neoformans. Microbiology 2001; 147: 891–907
  • Diaz MR, Boekhout T, Kiesling T, Fell JW. Comparative analysis of the intergenic spacer regions and population structure of the species complex of the pathogenic yeast Cryptococcus neoformans. FEMS Yeast Res 2005; 5: 1129–1140
  • Diaz MR, Boekhout T, Theelen B, Fell JW. Molecular sequence analyses of the intergenic spacer (IGS) associated with rDNA of the two varieties of the pathogenic yeast, Cryptococcus neoformans. System Appl Microbiol 2000; 23: 535–545
  • Xu J, Vilgalys R, Mitchell TG. Multiple gene genealogies reveal recent dispersion and hybridization in the human pathogenic fungus Cryptococcus neoformans. Mol Ecol 2000; 9: 1471–1481
  • Loftus BJ, Fung E, Roncaglia P, et al. The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science 2005; 307: 1321–1324
  • Lisitsyn N, Lisitsyn N, Wigler M. Cloning the differences between two complex genomes. Science 1993; 259: 946–951
  • Hubank M, Schatz DG. Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Res 1994; 22: 5640–5648
  • Rosa e Silva LK, Staats CC, Goulart LS, et al. Identification of novel temperature-regulated genes in the human pathogen Cryptococcus neoformans using representational difference analysis. Res Microbiol 2008; 159: 221–229
  • Alzate JF, Ramírez-Pineda JR, González VM, et al. Leishmania (Viannia) panamensis: Cloning of the histone H1 genes by representational difference analysis. Exp Parasitol 2006; 112: 126–129
  • Bailão AM, Schrank A, Borges CL, et al. Differential gene expression by Paracoccidioides brasiliensis in host interaction conditions: representational difference analysis identifies candidate genes associated with fungal pathogenesis. Microbes Infect 2006; 8: 2686–2697
  • Dutra V, Nakasato L, Broetto L, et al. Application of representational difference analysis to identify sequence tags expressed by Metharizium anisopliae during the infection process of the tick Boophilus microplus cuticle. Res Microbiol 2004; 155: 245–251
  • Bowler LD, Hubank M, Spratt BG. Representational difference analysis of cDNA for the detection of differential gene expression in bacteria: development using a model of iron-regulated gene expression in Neisseria meningitidis. Microbiology 1999; 145: 3529–3537
  • Casali AK, Goulart L, Silva LKR, et al. Molecular typing of clinical and environmental Cryptococcus neoformans isolates in the Brazilian state Rio Grande do Sul. FEMS Yeast Res 2003; 3: 405–415
  • Medeiros Ribeiro A, Silva LK, Silveira Schrank I, et al. Isolation of Cryptococcus neoformans var. neoformans serotype D from Eucalypts in South Brazil. Med Mycol 2006; 44: 707–713
  • Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 2001
  • Zhang D, Yang Y, Castlebury LA, Cerniglia CE. A method for the large scale isolation of high transformation efficiency fungal genomic DNA. FEMS Microbiol Lett 1996; 145: 261–265
  • Pastorian K, Hawell L, Byus CV. Optimization of cDNA representational difference analysis for the identification of differentially expressed mRNAs. Anal Biochem 2000; 283: 89–98
  • Ewing B, Hillier LM, Wendl C, Green P. Base-calling of automated sequencer traces using PHRED. I. Accuracy assessment. Genome Res 1998; 8: 175–185
  • Altschul SF, Madden TL, Schaffer AA, et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res 1997; 25: 3389–3402
  • Staden R, Beal KF, Bonfield JK. The Staden package. Methods Mol Biol 2000; 132: 115–130
  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25: 4876–4882
  • Nicholas KB, Nicholas HB, Jr., Deerfiled DW. GeneDoc: a tool for editing and annotating multiple sequence alignments. EMBnet News 1997; 4: 14
  • Del Rio ML, Navas-Mendez J, Gutierrez-Martin CB, Rodriguez-Barbosa JI, Rodriguez-Ferri EF. Identification of sulI allele of dihydropteroate synthase by representational difference analysis in Haemophilus parasuis serovar 2. Lett Appl Microbiol 2005; 40: 436–442
  • Qiu WQ, Folstein MF. Insulin, insulin-degrading enzyme and amyloid-peptide in Alzheimer's disease: review and hypothesis. Neurobiol Aging 2006; 27: 190–198
  • Adames N, Blundell K, Ashby MN, Boone C. Role of yeast insulin-degrading enzyme homologs in propheromone processing and bud site selection. Science 1995; 270: 464–467
  • Fujita A, Oka C, Arikawa Y, et al. A yeast gene necessary for bud-site selection encodes a protein similar to insulin-degrading enzymes. Nature 1994; 372: 567–570
  • Kim S, Lapham AN, Freedman CGK, Reed TL, Schmidt WK. Yeast as a tractable genetic system for functional studies of the insulin-degrading enzyme. J Biol Chem 2005; 280: 27481–27490
  • Banks IR, Specht CA, Donlin MJ, et al. A chitin synthase and its regulator protein are critical for chitosan production and growth of the fungal pathogen Cryptococcus neoformans. Eucaryot Cell 2005; 4: 1902–1912
  • Walton FJ, Idnurm A, Heitman J. Novel gene functions required for melanization of the human pathogen Cryptococcus neoformans. Mol Microbiol 2005; 57: 1381–1396
  • Agron PG, Macht M, Radnedge L, et al. Use of subtractive hybridization for comprehensive surveys of procaryotic genome differences. FEMS Microbiol Lett 2002; 211: 175–182
  • Sagerström CG, Sun BI, Sive HL. Subtractive cloning: past, present and future. Annu Rev Biochem 1997; 66: 751–783
  • Cao Y, He Z, Wang Z, et al. Hybridization monitor: A method for identifying differences between complex genomes. J Microbiol Meth 2006; 64: 305–315
  • Litvintseva AP, Marra RE, Nielsen K, et al. Evidence of sexual recombination among Cryptococcus neoformans serotype A isolates in sub-Saharan Africa. Eukaryot Cell 2003; 2: 1162–1168

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.