115
Views
2
CrossRef citations to date
0
Altmetric
Metabolism

Essential pathway identification: from in silico analysis to potential antifungal targets in Aspergillus fumigatus

, &
Pages S80-S87 | Received 28 Jan 2008, Published online: 27 Feb 2009

References

  • Stevens DA, Kan VL, Judson MA, et al. Practice guidelines for diseases caused by Aspergillus. Clin Infect Dis 2000; 30: 696–709
  • Ellis M. Invasive fungal infections: evolving challenges for diagnosis and therapeutics. Mol Immunol 2002; 38: 947–957
  • Gupte M, Kulkarni P, Ganguli BN. Antifungal antibiotics. Appl Microbiol Biotechnol 2002; 58: 46–57
  • Petrikkos G, Skiada A. Recent advances in antifungal chemotherapy. Internat J Antimicrob Agents 2007; 30: 108–117
  • Hu, W, Sillaots, S, Lemieux, S, Davison, J, Kauffman, S, , et al (2007). Essential gene identification and drug target prioritization in Aspergillus fumigatus. PloS Pathog, 3(3): e24. doi:10.1371/journal.ppat.0030024
  • Firon A, Villalba F, Beffa R, d'Enfert C. Identification of essential genes in the human fungal pathogen Aspergillus fumigatus by transposon mutagenesis. Eukary Cell 2003; 2: 247–255
  • Ross-Macdonald P, Coelho PSR, Roemer T, et al. Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature 1999; 402: 413–418
  • De Backer MD, Nelissen B, Logghe M, et al. An antisense-based functional genomics approach for identification of genes critical for growth of Candida albicans. Nature Biotechnol 2001; 19: 235–241
  • Osmani AH, Oakley BR, Osmani SA. Identification and analysis of essential Aspergillus nidulans genes using the heterokaryon rescue technique. Nature Protocols 2006; 1: 2517–2526
  • Kobayashi K, Ehrlich SD, Albertini A, et al. Essential Bacillus subtilis genes. Proc Nat Acad Sci (USA) 2003; 100: 4678–4683
  • Baba, T, Ara, T, Hasegawa, M, , et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2006; doi:10.1038/msb4100050.
  • Giaever G, Chu AM, Ni L, et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 2002; 418: 387–391
  • Andersen MR, Nielsen ML, Nielsen J. Metabolic model integration of the bibliome, genome, metabolome, and reactome of Aspergillus niger. Mol Syst Biol 2008; 4: 178
  • Baker SE. Aspergillus niger genomics: past, present and into the future. Med Mycol 2006; 44: S17–S21
  • Pel HJ, de Winde JH, Archer DB, et al. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nature Biotechnol 2007; 25: 221–231
  • Nierman WC, Pain A, Anderson MJ, et al. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 2005; 438: 1151–1156
  • Koonin EV, Fedorova ND, Jackson JD, et al. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol 2004; 5: R7
  • Ballance DJ, Turner G. Development of a high-frequency transforming vector for Aspergillus nidulans. Gene 1985; 36: 321–331
  • van Hartingsveldt, W, Mattern, IE, van Zeijl, CM., Pouwels, PH, van den Hondel, CA. Development of a homologous transformation system for Aspergillus niger based on the pyrG gene. Mol Gen Genet 1987; 206: 71–75.
  • de Ruiter-Jacobs YM, Broekhuijsen M, Unkles SE, et al. A gene transfer system based on the homologous pyrG gene and efficient expression of bacterial genes in Aspergillus oryzae. Curr Genet 1989; 16: 156–163
  • Gouka RJ, Hessing JG, Stam H, Musters W, van den Hondel CA. A novel strategy for the isolation of defined pyrG mutants and the development of a site-specific integration system for Aspergillus awamori. Curr Genet 1995; 27: 536–540
  • D'Enfert C. Selection of multiple disruption events in Aspergillus fumigatus using the orotidine-5'-decarboxylase gene, pyrG, as a unique transformation marker. Cur Genet 1996; 30: 76–82
  • Weidner G, d'Enfert C, Koch A, Mol PC, Brakhage AA. Development of a homologous transformation system for the human pathogenic fungus Aspergillus fumigatus based on the pyrG gene encoding orotidine 5'-monophosphate decarboxylase. Curr Genet 1998; 33: 378–385
  • D'Enfert C, Diaquin M, Delit A, et al. Attenuated virulence of uridine-uracil auxotrophs of Aspergillus fumigatus. Inf Immun 1996; 64: 4401–4405
  • Liebmann B, Muhleisen TW, Muller M, et al. Deletion of the Aspergillus fumigatus lysine biosynthesis gene lysF encoding homoaconitase leads to attenuated virulence in a low-dose mouse infection model of invasive aspergillosis. Arch Microbiol 2004; 181: 378–383
  • Maerker C, Rohde M, Brakhage AA, Brock M. Methylcitrate synthase from Aspergillus fumigatus-Propionyl-CoA affects polyketide synthesis, growth and morphology of conidia. FEBS J 2005; 272: 3615–3630
  • Ibrahim-Granet O, Dubourdeau M, Latgé JP, et al. Methylcitrate synthase from Aspergillus fumigatus is essential for manifestation of invasive aspergillosis. Cell Microbio 2008; 10: 134–148

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.