147
Views
2
CrossRef citations to date
0
Altmetric
Laboratory

Imaging living cells of Aspergillus in vitro

&
Pages S110-S119 | Received 01 Sep 2008, Published online: 02 Mar 2009

References

  • Murphy DB. Fundamentals of Light Microscopy and Electronic Imaging. Wiley-Liss, New York 2001
  • Freitag M, Hickey PC, Raju NB, Selker EU, Read ND. GFP as a tool to analyze the organization, dynamics and function of nuclei and microtubules in Neurospora crassa. Fungal Genet Biol 2004; 41: 897–910
  • Hickey PC, Swift SR, Roca MG, Read ND. Live-cell imaging of filamentous fungi using vital fluorescent dyes and confocal microscopy. Methods in Microbiology, Vol 35, Microbial Imaging, T Savidge, C Pothoulakis. Elsevier, London 2005; 63–87
  • Mouriño-Pérez RR, Roberson RW, Bartnicki-Garcia S. Microtubule dynamics and organization during hyphal growth and branching in Neurospora crassa. Fungal Genet Biol 2006; 43: 389–400
  • Uchida, M, Mouriño-Pérez, RR, Freitag, M, Bartnicki-Garcia, S. Microtubule dynamics and the role of molecular motors in Neurospora crassa. Fungal Genet Biol 2007, Oct 26; 45: 683–692.
  • Horio T, Oakley BR. The role of microtubules in rapid hyphal tip growth of Aspergillus nidulans. Mol Biol Cell 2005; 16: 918–926
  • Osmani Ah, Davies J, Liu H-L, Nile A, Osmani SA. Systematic deletion and mitotic localization of the nuclear pore complex proteins of Aspergillus nidulans. Mol Biol Cell 2006; 17: 4946–4961
  • Taheri-Talesh N, Horio T, Araujo-Bazán L, et al. The tip growth apparatus of Aspergillus nidulans. Mol Biol Cell 2008; 19: 1439–1449
  • Swedlow JR, Platani M. Live cell imaging using wide-field microscopy and deconvolution. Cell Struct Function 2002; 27: 335–341
  • Valkonen M, Kalkman ER, Saloheimo M, et al. Spatially segregated SNARE protein interactions in living fungal cells. J Biol Chem 2007; 282: 22775–22785
  • Riquelme M, Bartnicki-Garcia S, Gonzalez-Prieto JM, et al. Spitzenkörper localization and intracellular traffic of green fluorescent protein-labeled CHS-3 and CHS-6 chitin synthases in living hyphae of Neurospora crassa. Eukaryot Cell 2007; 6: 1853–1864
  • Czymmek KH, Bourett TM, Howard RJ. Fluorescent protein probes in fungi. Methods in Microbiology, Vol. 35, Microbial Imaging, T Savidge, C Pothoulakis. Elsevier, London 2005; 27–62
  • Vinck A, Terlou M, Pestman WR, et al. Hyphal differentiation in the exploring mycelium of Aspergillus niger. Mol Microbiol 2005; 58: 693–699
  • Purschwitz J, Müller S, Kastener C, et al. Functional and physical interaction of blue- and red-light sensors in Aspergillus nidulans. Curr Biol 2008; 26: 255–259
  • Efimov VP, Zhang J, Xiang X. CLIP-170 homologue and NUDE plays overlapping roles in NUDF localization in Aspergillus nidulans. Curr Biol 2006; 17: 2021–2034
  • Han G, Liu B, Zhang W, Morris NR, Xiang X. The Aspergillus cytoplasmic dynein heavy chain and NUDF localize to microtubule ends and affect microtubule dynamics. Curr Biol 2001; 11: 719–724
  • Horio T, Oakley BR. The role of microtubules in rapid hyphal tip growth of Aspergillus nidulans. Mol Biol Cell 2005; 16: 918–926
  • Konzack S, Rischitor PE, Enke C, Fischer R. The role of the kinesin motor KipA in microtubule organization and polarized growth of Aspergillus nidulans. Mol Biol Cell 2005; 16: 497–506
  • Li S, Oakley CE, Chen G, et al. Cytoplasmic dynein's mitotic spindle pole localization requires a functional anaphase-promoting complex, gamma-tubulin, and NUDF/LIS1 in Aspergillus nidulans. Mol Biol Cell 2005; 16: 3591–3605
  • Liu B, Xiang X, Lee YR. The requirement of the LC8 dynein light chain for nuclear migration and septum positioning is termperature dependent in Aspergillus nidulans. Mol Microbiol 2003; 47: 291–301
  • Osmani AH, Davies J, Oakley CE, Oakley BR, Osmani SA. TINA interacts with the NIMA kinase in Aspergillus nidulans and negatively regulates astral microtubules during metaphase arrest. Mol Biol Cell 2003; 14: 3169–3179
  • Ovechkina Y, Maddox P, Oakley CE, et al. Spindle formation in Aspergillus is coupled to tubulin movement into the nucleus. Mol Biol Cell 2003; 14: 2192–2200
  • Prigozhina NL, Oakley CE, Lewis AM, et al. Gamma-tubulin plays an essential role in the coordination of mitotic events. Mol Biol Cell 2004; 15: 1374–1386
  • Su W, Li S, Oakley BR, Xiang X. Dual-Color imaging of nuclear division and mitotic spindle elongation in live cells of Aspergillus nidulans. Eukaryot Cell 2004; 3: 553–556
  • Veith D, Scherr N, Efimov VP, Fischer R. Role of the spindle-pole-body protein ApsB and the cortex protein ApsA in microtubule organization and nuclear migration in Aspergillus nidulans. J Cell Sci 2005; 118: 3705–3716
  • Virag A, Lee MP, Si H, Harris SD. Regulation of hyphal morphogenesis by cdc42 and rac1 homologues in Aspergillus nidulans. Mol Microbiol 2007; 66: 1579–1596
  • Xiang X, Han G, Winkelmann DA, Zuo W, Morris NR. Dynamics of cytoplasmic dynein in living cells and the effect of a mutation in the dynactin complex actin-related protein Arp1. Curr Biol 2000; 10: 603–606
  • Xiang X, Fischer R. Nuclear migration and positioning in filamentous fungi. Fungal Genet Biol 2004; 41: 411–419
  • Zhang J, Han G, Xiang X. Cytoplasmic dynein intermediate and heavy chain are dependent upon each other for microtubule end localization in Aspergillus nidulans. Mol Microbiol 2002; 44: 381–392
  • Zhang J, Li S, Fischer R, Xiang X. Accumulation of cytoplasmic dynein and dynactin at microtubule plus ends in Aspergillus nidulans is kinesin dependent. Mol Biol Cell 2003; 14: 1479–1488
  • Fernández-Abalos JM, Fox H, Pitt C, Wells B, Doonan JH. Plant-adapted green fluorescent protein is a versatile vital reporter for gene expression, protein localization and mitosis in the filamentous fungus, Aspergillus nidulans. Mol Microbiol 1998; 27: 121–130
  • Maruyama J-I, Kikuchi S, Kitamoto K. Differential distribution of the endoplasmic reticulum network as visualized by the BipA-EGFP fusion protein in hyphal compartments across the septum of the filamentous fungus, Aspergillus oryzae. Fungal Genet Biol 2006; 43: 642–654
  • Kuratsu M, Taura A, Shoji J-Y, et al. Systematic analysis of SNARE localization in the filamentous fungus Aspergillus oryzae. Fungal Genet Biol 2007; 44: 1310–1323
  • Breakspear A, Langford KJ, Momany M, Assinder SJ. CopA:GFP localizes to putative Golgi equivalents in Aspergillus nidulans. FEMS Microbiol Lett 2007; 277: 90–97
  • Toews MW, Warmbold J, Konzack S, et al. Establishment of mRFP1 as a fluorescent marker in Aspergillus nidulans and construction of expression vectors for high-throughput protein tagging using recombination in vitro (GATEWAY). Curr Genet 2004; 45: 383–389
  • Bhabhra R, Zhao W, Rhodes JC, Askew DS. Nucleolar localization of Aspergillus fumigatus CGrA is temperature-dependent. Fungal Genet Biol 2006; 43: 1–7
  • De Souza CPC, Osmani AH, Hashmi SB, Osmani SA. Partial nuclear pore complex disassembly during closed mitosis in Aspergillus nidulans. Curr Biol 2004; 14: 1973–1984
  • Fox H, Hickey PC, Fernández-Ábalos JM, Lunness P, Read ND, Doonan JH. Dynamic distribution of BIMG PP1 in living hyphae of Aspergillus indicates a novel role in septum formation. Mol Microbiol 2002; 45: 1219–1230
  • Shaw BD, Upadhyay S. Aspergillus nidulans swoK encodes an RNA binding protein that is important for cell polarity. Fungal Genet Biol 2005; 42: 862–872
  • Takeshita N, Higashitsuji Y, Konzack S, Fischer R. Apical sterol-rich membranes are essential for localizing cell end markers that determine growth directionality in the filamentous fungus Aspergillus nidulans. Mol Biol Cell 2008; 19: 339–351
  • Blumenstein A, Vienken K, Tasler R, et al. The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr Biol 2005; 15: 1833–1888
  • Gordon CL, Archer DB, Geenes DJ, et al. A glucoamylase:GFP gene fusion to study protein secretion by individual hyphae of Aspergillus niger. J Microbiol Meth 2000; 42: 39–48
  • Sharpless KE, Harris SD. Functional characterization and localization of the Aspergillus nidulans forming SEPA. Mol Biol Cell Feb 2002; 13: 469–479
  • Maruyama J, Juvvadi PR, Ishi K, Kitamoto K. Three-dimensional image analysis of plugging at the septal pore by Woronin body during hypotonic shock inducing hyphal tip bursting in the filamentous fungus Aspergillus oryzae. Biochem Biophys Res Commun 2005; 17: 1081–1088
  • Harris SD, Read ND, Roberson RW, et al. Polarisome meets Spitzenkörper: microscopy, genetics, and genomics converge. Eukaryot Cell 2005; 4: 225–229
  • Fischer-Parton S, Parton RM, Hickey PC, et al. Confocal microscopy of FM4-64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae. J Microsc 2000; 198: 246–259
  • Meyer V, Arentshorst M, van den Hondel CAMJJ, Ram AFJ. The polarisome component Spa localises to hyphal tips of Aspergillus niger and is important for polar growth. Fungal Genet Biol 2008; 45: 152–164
  • Ohneda M, Arioka M, Nakajima H, Kitamoto K. Visualization of vacuoles in Aspergillus oryzae by expression of CPY-EGFP. Fungal Genet Biol 2002; 37: 29–38
  • Shoji J-Y, Arioka M, Kitamoto K. Vacuolar membrane dynamics in the filamentous fungus Aspergillus oryzae. Eukaryot Cell 2006; 5: 411–421
  • Juvvadi PR, Maruyama J, Kitamoto K. Phosphorylation of the Aspergillus oryzae Woronin body protein, AoHex1, by protein kinase C: evidence for its role in the multimerization and proper localization of the Woronin body protein. Biochem J 2007; 405: 533–540
  • Czymmek KJ, Whallon JH, Klomparens A. Confocal microscopy in mycological research. Exp Mycol 1994; 18: 275–293
  • Jaffe LE. Calcium waves. Philos Trans R Soc Lond B Biol Sci 2008; 363: 1311–1316
  • Parry H, McDougall A, Whitaker M. Microdomains bounded by endoplasmic reticulum segregate cell cycle calcium transients in syncytial Drosophila embryos. J Cell Biol 2005; 171: 47–59
  • Markham P. Organelles of filamentous fungi. The Growing Fungus, NAR Gow, GM Gadd. Chapman & Hall, London 1995; 75–98
  • Swift SR, Hart CA, Bartlett DW, Read ND. Interactions between azoxystrobin and Puccinia recondita, Erysiphe graminis, and Botrytis cinerea on the microscale. Scanning 2001; 23: 153–154
  • Cole L, Orlovich DA, Ashford AE. Structure, function, and motility of vacuoles in filamentous fungi. Fungal Genet Biol 1998; 24: 86–100
  • Darrah PR, Tlalka M, Ashford A, Watkinson SC, Fricker MD. The vacuole system is a significant intracellular pathway for longitudinal solute transport in basidiomycete fungi. Eukaryot Cell 2006; 5: 1111–1125
  • Howard RJ. Ultrastructure analysis of hyphal tip cell growth in fungi: Spitzenkörper, cytoskeleton and endomembranes after freeze-substitution. J Cell Sci 1981; 48: 89–103

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.