1,952
Views
0
CrossRef citations to date
0
Altmetric
Infectious Diseases

Public health impact and cost-effectiveness of switching from bivalent to nonavalent vaccine for human papillomavirus in Norway: incorporating the full health impact of all HPV-related diseases

ORCID Icon, , ORCID Icon, , ORCID Icon, , & show all
Pages 1085-1098 | Received 18 Jul 2023, Accepted 17 Aug 2023, Published online: 05 Sep 2023

References

  • Forman D, de Martel C, Lacey CJ, et al. Global burden of human papillomavirus and related diseases. Vaccine. 2012;30(Suppl 5):F12–23. doi: 10.1016/j.vaccine.2012.07.055.
  • de Martel C, Plummer M, Vignat J, et al. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int J Cancer. 2017;141(4):664–670. doi: 10.1002/ijc.30716.
  • Patel H, Wagner M, Singhal P, et al. Systematic review of the incidence and prevalence of genital warts. BMC Infect Dis. 2013;13(1):39. doi: 10.1186/1471-2334-13-39.
  • Wangu Z, Hsu KK. Impact of HPV vaccination on anogenital warts and respiratory papillomatosis. Hum Vaccin Immunother. 2016;12(6):1357–1362. doi: 10.1080/21645515.2016.1172754.
  • Pils S, Joura EA. From the monovalent to the nine-valent HPV vaccine. Clin Microbiol Infect. 2015;21(9):827–833. doi: 10.1016/j.cmi.2015.05.001.
  • Schiller JT, Castellsague X, Garland SM. A review of clinical trials of human papillomavirus prophylactic vaccines. Vaccine. 2012;30(Suppl 5):F123–F138. doi: 10.1016/j.vaccine.2012.04.108.
  • Drolet M, Benard E, Perez N, et al. Population-level impact and herd effects following the introduction of human papillomavirus vaccination programmes: updated systematic review and meta-analysis. Lancet. 2019;394(10197):497–509. doi: 10.1016/S0140-6736(19)30298-3.
  • Wheeler CM, Kjaer SK, Sigurdsson K, et al. The impact of quadrivalent human papillomavirus (HPV; types 6, 11, 16, and 18) L1 virus-like particle vaccine on infection and disease due to oncogenic nonvaccine HPV types in sexually active women aged 16–26 years. J Infect Dis. 2009;199(7):936–944. doi: 10.1086/597309.
  • Brown DR, Joura EA, Yen GP, et al. Systematic literature review of cross-protective effect of HPV vaccines based on data from randomized clinical trials and real-world evidence. Vaccine. 2021;39(16):2224–2236. doi: 10.1016/j.vaccine.2020.11.076.
  • Enerly E, Flingtorp R, Christiansen IK, et al. An observational study comparing HPV prevalence and type distribution between HPV-vaccinated and -unvaccinated girls after introduction of school-based HPV vaccination in Norway. PLOS One. 2019;14(10):e0223612. doi: 10.1371/journal.pone.0223612.
  • Feiring B, Laake I, Christiansen IK, et al. Substantial decline in prevalence of vaccine-type and nonvaccine-type human papillomavirus (HPV) in vaccinated and unvaccinated girls 5 years after implementing HPV vaccine in Norway. J Infect Dis. 2018;218(12):1900–1910. doi: 10.1093/infdis/jiy432.
  • Molden T, Feiring B, Ambur OH, et al. Human papillomavirus prevalence and type distribution in urine samples from Norwegian women aged 17 and 21 years: a nationwide cross-sectional study of three non-vaccinated birth cohorts. Papillomavirus Res. 2016;2:153–158. doi: 10.1016/j.pvr.2016.05.002.
  • Kjaer SK, Tran TN, Sparen P, et al. The burden of genital warts: a study of nearly 70,000 women from the general female population in the 4 Nordic countries. J Infect Dis. 2007;196(10):1447–1454. doi: 10.1086/522863.
  • Hansen BT, Campbell S, Nygård M. Long-term incidence trends of HPV-related cancers, and cases preventable by HPV vaccination: a registry-based study in Norway. BMJ Open. 2018;8(2):e019005. doi: 10.1136/bmjopen-2017-019005.
  • Orumaa M, Kjaer SK, Dehlendorff C, et al. The impact of HPV multi-cohort vaccination: real-world evidence of faster control of HPV-related morbidity. Vaccine. 2020;38(6):1345–1351. doi: 10.1016/j.vaccine.2019.12.016.
  • Hylin H, Thrane H, Pedersen K, et al. The healthcare costs of treating human papillomavirus-related cancers in Norway. BMC Cancer. 2019;19(1):426. doi: 10.1186/s12885-019-5596-2.
  • Burger EA, Sy S, Nygård M, et al. Prevention of HPV-related cancers in Norway: cost-effectiveness of expanding the HPV vaccination program to include pre-adolescent boys. PLOS One. 2014;9(3):e89974. doi: 10.1371/journal.pone.0089974.
  • Sander BB, Rebolj M, Valentiner-Branth P, et al. Introduction of human papillomavirus vaccination in nordic countries. Vaccine. 2012;30(8):1425–1433. doi: 10.1016/j.vaccine.2011.11.097.
  • Norwegian Institute of Public Health. HPV-vaksine (Human papillomavirus) – veileder for helsepersonell; 2023 [cited 2023 Feb 15]. https://www.fhi.no/nettpub/vaksinasjonsveilederen-for-helsepersonell/vaksiner-mot-de-enkelte-sykdommene/hpv-vaksinasjon-humant-papillomavir/#bruk-av-hpvvaksine-i-norge.
  • Portnoy A, Pedersen K, Nygård M, et al. Identifying a single optimal integrated cervical cancer prevention policy in Norway: a cost-effectiveness analysis. Med Decis Making. 2022;42(6):795–807. doi: 10.1177/0272989X221082683.
  • Cancer Registry of Norway. Mer følsom livmorhalsprøve til yngre kvinner [More sensitive cervical screening for younger women]; 2023 [cited 2023 Mar 31]. https://www.kreftregisteret.no/Generelt/Nyheter/2022/endring_i_algoritmen_livmorhalsprogrammet/.
  • Portnoy A, Pedersen K, Trogstad L, et al. Impact and cost-effectiveness of strategies to accelerate cervical cancer elimination: a model-based analysis. Prev Med. 2021;144:106276. doi: 10.1016/j.ypmed.2020.106276.
  • Kavanagh K, Pollock KG, Potts A, et al. Introduction and sustained high coverage of the HPV bivalent vaccine leads to a reduction in prevalence of HPV 16/18 and closely related HPV types. Br J Cancer. 2014;110(11):2804–2811. doi: 10.1038/bjc.2014.198.
  • Elbasha EH, Dasbach EJ. Impact of vaccinating boys and men against HPV in the United States. Vaccine. 2010;28(42):6858–6867. doi: 10.1016/j.vaccine.2010.08.030.
  • Cody P, Tobe K, Abe M, et al. Public health impact and cost effectiveness of routine and catch-up vaccination of girls and women with a nine-valent HPV vaccine in Japan: a model-based study. BMC Infect Dis. 2021;21(1):11. doi: 10.1186/s12879-020-05632-0.
  • Daniels V, Prabhu VS, Palmer C, et al. Public health impact and cost-effectiveness of catch-up 9-valent HPV vaccination of individuals through age 45 years in the United States. Hum Vaccin Immunother. 2021;17(7):1943–1951. doi: 10.1080/21645515.2020.1852870.
  • Dasbach EJ, Insinga RP, Elbasha EH. The epidemiological and economic impact of a quadrivalent human papillomavirus vaccine (6/11/16/18) in the UK. BJOG. 2008;115(8):947–956. doi: 10.1111/j.1471-0528.2008.01743.x.
  • Elbasha EH, Dasbach EJ, Insinga RP. Model for assessing human papillomavirus vaccination strategies. Emerg Infect Dis. 2007;13(1):28–41. doi: 10.3201/eid1301.060438.
  • Elbasha EH, Dasbach EJ, Insinga RP. A multi-type HPV transmission model. Bull Math Biol. 2008;70(8):2126–2176. doi: 10.1007/s11538-008-9338-x.
  • Ng SS, Hutubessy R, Chaiyakunapruk N. Systematic review of cost-effectiveness studies of human papillomavirus (HPV) vaccination: 9-Valent vaccine, gender-neutral and multiple age cohort vaccination. Vaccine. 2018;36(19):2529–2544. doi: 10.1016/j.vaccine.2018.03.024.
  • Legemiddelverk S. Guidelines for the submission of documentation for single technology assessment (STA) of pharmaceuticals. The Norwegian Medicines Agency; 2018 [cited 2023 Aug 24]. Available from: https://legemiddelverket.no/Documents/English/Public%20funding%20and%20pricing/Documentation%20for%20STA/Guidelines%20151018.pdf
  • The Norwegian Medicines Agency. Guidelines for the submission of documentation for single technology assessment (STA) of pharmaceuticals; 2021 [cited 2023 May 3]. https://legemiddelverket.no/english/public-funding-and-pricing/documentation-for-sta/guidelines-for-the-submission-of-documentation-for-single-technology-assessment-sta-of-pharmaceuticals.
  • Hethcote HW. An age-structured model for pertussis transmission. Math Biosci. 1997;145(2):89–136. doi: 10.1016/s0025-5564(97)00014-x.
  • Statistics Norway. Deaths; 2023 [cited 2023 May 16]. https://www.ssb.no/en/befolkning/fodte-og-dode/statistikk/dode.
  • Garnett GP, Anderson RM. Factors controlling the spread of HIV in heterosexual communities in developing countries: patterns of mixing between different age and sexual activity classes. Philos Trans R Soc Lond B Biol Sci. 1993;342(1300):137–159.
  • Hansen BT, Kjaer SK, Arnheim-Dahlstrom L, et al. Age at first intercourse, number of partners and sexually transmitted infection prevalence among Danish, Norwegian and Swedish women: estimates and trends from nationally representative cross-sectional surveys of more than 100 000 women. Acta Obstet Gynecol Scand. 2020;99(2):175–185. doi: 10.1111/aogs.13732.
  • Choi YH, Jit M, Gay N, et al. Transmission dynamic modelling of the impact of human papillomavirus vaccination in the United Kingdom. Vaccine. 2010;28(24):4091–4102. doi: 10.1016/j.vaccine.2009.09.125.
  • Burger EA, Ortendahl JD, Sy S, et al. Cost-effectiveness of cervical cancer screening with primary human papillomavirus testing in Norway. Br J Cancer. 2012;106(9):1571–1578. doi: 10.1038/bjc.2012.94.
  • The Norwegian Cancer Registry. Report on HPV-screening of women in the age of 25–33 years; November 2022 [cited 2023 May 3]. https://www.kreftregisteret.no/screening/livmorhalsprogrammet/Helsepersonell/rapporter-utarbeidet-av-livmorhalsprogrammet/.
  • Ault KA, Future IISG, Future II Study Group. Effect of prophylactic human papillomavirus L1 virus-like-particle vaccine on risk of cervical intraepithelial neoplasia grade 2, grade 3, and adenocarcinoma in situ: a combined analysis of four randomised clinical trials. Lancet. 2007;369(9576):1861–1868. doi: 10.1016/S0140-6736(07)60852-6.
  • Garland SM, Hernandez-Avila M, Wheeler CM, et al. Quadrivalent vaccine against human papillomavirus to prevent anogenital diseases. N Engl J Med. 2007;356(19):1928–1943. doi: 10.1056/NEJMoa061760.
  • Joura EA, Giuliano AR, Iversen OE, et al. A 9-valent HPV vaccine against infection and intraepithelial neoplasia in women. N Engl J Med. 2015;372(8):711–723. doi: 10.1056/NEJMoa1405044.
  • Joura EA, Leodolter S, Hernandez-Avila M, et al. Efficacy of a quadrivalent prophylactic human papillomavirus (types 6, 11, 16, and 18) L1 virus-like-particle vaccine against high-grade vulval and vaginal lesions: a combined analysis of three randomised clinical trials. Lancet. 2007;369(9574):1693–1702. doi: 10.1016/S0140-6736(07)60777-6.
  • Palefsky JM, Giuliano AR, Goldstone S, et al. HPV vaccine against anal HPV infection and anal intraepithelial neoplasia. N Engl J Med. 2011;365(17):1576–1585. doi: 10.1056/NEJMoa1010971.
  • Norwegian Medicines Agency. Price database; 2022 [cited 2022 Jul 19]. https://www.legemiddelsok.no/.
  • Burger EA, Sy S, Nygård M, et al. Too late to vaccinate? The incremental benefits and cost-effectiveness of a delayed catch-up program using the 4-valent human papillomavirus vaccine in Norway. J Infect Dis. 2015;211(2):206–215. doi: 10.1093/infdis/jiu413.
  • Cancer Registry of Norway. Statistics bank; 2023 [cited 2023 Apr 21]. https://sb.kreftregisteret.no/?lang=en.
  • Simard EP, Torre LA, Jemal A. International trends in head and neck cancer incidence rates: differences by country, sex and anatomic site. Oral Oncol. 2014;50(5):387–403. doi: 10.1016/j.oraloncology.2014.01.016.
  • Omland T, Lie KA, Akre H, et al. Recurrent respiratory papillomatosis: HPV genotypes and risk of high-grade laryngeal neoplasia. PLOS One. 2014;9(6):e99114. doi: 10.1371/journal.pone.0099114.
  • Baio G, Capone A, Marcellusi A, et al. Economic burden of human papillomavirus-related diseases in Italy. PLOS One. 2012;7(11):e49699. doi: 10.1371/journal.pone.0049699.[PMC]]
  • Bresse X, Adam M, Largeron N, et al. A comparative analysis of the epidemiological impact and disease cost-savings of HPV vaccines in France. Hum Vaccin Immunother. 2013;9(4):823–833. doi: 10.4161/hv.22994.