183
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Effect of oxygen on neuronal excitability measured by critical flicker fusion frequency is dose dependent

, , &
Pages 276-284 | Received 07 Aug 2014, Accepted 08 Jan 2015, Published online: 26 Feb 2015

References

  • Balestra, C., Lafère, P., & Germonpré, P. (2012). Persistence of critical flicker fusion frequency impairment after a 33 mfw SCUBA dive: Evidence of prolonged nitrogen narcosis? European Journal of Applied Physiology, 112, 4063–4068.
  • Bliss, T. V., & Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of Physiology, 232, 331–356.
  • Chavko, M., Braisted, J. C., Outsa, N. J., & Harabin, A. L. (1998). Role of cerebral blood flow in seizures from hyperbaric oxygen exposure. Brain Research, 791, 75–82.
  • Choi, M. H., Kim, H. J., Kim, J. H., Kim, H. S., Choi, J. S., Yi, J. H., … Chung, S. C. (2013). Correlation between cognitive ability measured by response time of 1-back task and changes of SpO2 by supplying three different levels of oxygen in the elderly. Geriatrics & Gerontology International, 13, 384–387.
  • Choi, M. H., Lee, S. J., Yang, J. W., Choi, J. S., Kim, H. S., Kim, H. J., … Chung, S. C. (2010). Activation of the limbic system under 30% oxygen during a visuospatial task: An fMRI study. Neuroscience Letters, 471, 70–73.
  • Chung, S. C., Iwaki, S., Tack, G. R., Yi, J. H., You, J. H., & Kwon, J. H. (2006). Effect of 30% oxygen administration on verbal cognitive performance, blood oxygen saturation and heart rate. Applied Psychophysiology and Biofeedback, 31, 281–293.
  • Chung, S. C., Tack, G. R., Lee, B., Eom, G. M., Lee, S. Y., & Sohn, J. H. (2004). The effect of 30% oxygen on visuospatial performance and brain activation: An fMRI study. Brain and Cognition, 56, 279–285.
  • Dean, J. B., Mulkey, D. K., Garcia, A. J., III, Putnam, R. W., & Henderson, R. A., III (2003). Neuronal sensitivity to hyperoxia, hypercapnia, and inert gases at hyperbaric pressures. Journal of Applied Physiology, 95, 883–909.
  • Demchenko, I. T., Boso, A. E., O’Neill, T. J., Bennett, P. B., & Piantadosi, C. A. (2000). Nitric oxide and cerebral blood flow responses to hyperbaric oxygen. Journal of Applied Physiology, 88, 1381–1389.
  • Demchenko, I. T., Oury, T. D., Crapo, J. D., & Piantadosi, C. A. (2002). Regulation of the brain’s vascular responses to oxygen. Circulation Research, 91, 1031–1037.
  • Demchenko, I. T., & Piantadosi, C. A. (2006). Nitric oxide amplifies the excitatory to inhibitory neurotransmitter imbalance accelerating oxygen seizures. Undersea & Hyperbaric Medicine, 33, 169–174.
  • Demchenko, I. T., Ruehle, A., Allen, B. W., Vann, R. D., & Piantadosi, C. A. (2009). Phosphodiesterase-5 inhibitors oppose hyperoxic vasoconstriction and accelerate seizure development in rats exposed to hyperbaric oxygen. Journal of Applied Physiology, 106, 1234–1242.
  • Donald, K. W. (1947). Oxygen poisoning in man; signs and symptoms of oxygen poisoning. British Medical Journal, 1, 712–717.
  • Garcia, A. J., III, Putnam, R. W., & Dean, J. B. (2010a). Hyperbaric hyperoxia and normobaric reoxygenation increase excitability and activate oxygen-induced potentiation in CA1 hippocampal neurons. Journal of Applied Physiology, 109(3), 804–819.
  • Garcia, A. J., III, Putnam, R. W., & Dean, J. B. (2010b). Hyperoxic stimulation of synchronous orthodromic activity and induction of neural plasticity does not require changes in excitatory synaptic transmission. Journal of Applied Physiology, 109, 820–829.
  • Hemelryck, W., Rozloznik, M., Germonpre, P., Balestra, C., & Lafere, P. (2013). Functional comparison between critical flicker fusion frequency and simple cognitive tests in subjects breathing air or oxygen in normobaria. Diving and Hyperbaric Medicine, 43, 138–142.
  • Hesser, C. M., Fagraeus, L., & Adolfson, J. (1978). Roles of nitrogen, oxygen, and carbon dioxide in compressed-air narcosis. Undersea Biomedical Research, 5, 391–400.
  • Hindmarch, I. (1982). Critical flicker fusion frequency (CFFF): The effects of psychotropic compounds. Pharmacopsychiatry, 15, 44–48.
  • Huang, K. L., Wu, J. N., Lin, H. C., Mao, S. P., Kang, B., & Wan, F. J. (2000). Prolonged exposure to hyperbaric oxygen induces neuronal damage in primary rat cortical cultures. Neuroscience Letters, 293, 159–162.
  • Jammes, Y., Arbogast, S., Faucher, M., Montmayeur, A., Tagliarini, F., Meliet, J. L., & Robinet, C. (2003). Hyperbaric hyperoxia induces a neuromuscular hyperexcitability: Assessment of a reduced response in elite oxygen divers. Clinical Physiology and Functional Imaging, 23, 149–154.
  • Kahlbrock, N., Butz, M., May, E. S., Brenner, M., Kircheis, G., Häussinger, D., & Schnitzler, A. (2012). Lowered frequency and impaired modulation of gamma band oscillations in a bimodal attention task are associated with reduced critical flicker frequency. NeuroImage, 61, 216–227.
  • Kim, H. J., Kim, H. S., Choi, M. H., Lee, I. H., Hong, S. P., You, N. R., … Yi, J. H. (2014). Response time of visual matching task and heart rate in children with attention deficit hyperactivity disorder (ADHD). Bio-medical Materials and Engineering, 24, 987–991.
  • Koch, A. E., Kähler, W., Wegner-Bröse, H., Weyer, D., Kuhtz-Buschbeck, J., Deuschl, G., & Eschenfelder, C. C. (2008). Monitoring of CBFV and time characteristics of oxygen-induced acute CNS toxicity in humans. European Journal of Neurology, 15, 746–748.
  • Koch, A. E., Koch, I., Kowalski, J., Schipke, J. D., Winkler, B. E., Deuschl, G., … Kähler, W. (2013). Physical exercise might influence the risk of oxygen-induced acute neurotoxicity. Undersea & Hyperbaric Medicine, 40, 155–163.
  • Kot, J., Sicko, Z., & Wozniak, M. (2003). Oxidative stress during oxygen tolerance test. International Maritime Health, 54, 117–126.
  • Lacey, B. C., & Lacey, J. I. (1974). Studies of heartrate and other bodily processes in sensorimotor behaviour. In P. A. Obrist, A. H. Black, J. Brener, & L. V. DiCara (Eds.), Cardiovascular psychophysiology. Chicago, IL: Aldine.
  • Lacey, J. I., & Lacey, B. C. (1970). Some autonomic-central nervous system interrelationships. In P. Black (Ed.), Physiological correlates of emotion. New York, NY: Academic Press.
  • Lafère, P., Balestra, C., Hemelryck, W., Donda, N., Sakr, A., Taher, A., … Germonpré, P. (2010). Evaluation of critical flicker fusion frequency and perceived fatigue in divers after air and enriched air nitrox diving. Diving and Hyperbaric Medicine, 40, 114–118.
  • Lavoute, C., Weiss, M., Risso, J. J., & Rostain, J. C. (2012). Mechanism of action of nitrogen pressure in controlling striatal dopamine level of freely moving rats is changed by recurrent exposures to nitrogen narcosis. Neurochemical Research, 37, 655–664.
  • Lavoute, C., Weiss, M., Risso, J. J., & Rostain, J. C. (2014). Alteration of striatal dopamine levels under various partial pressure of oxygen in pre-convulsive and convulsive phases in freely-moving rats. Neurochemical Research, 39, 287–294.
  • Lavoute, C., Weiss, M., & Rostain, J. C. (2006). Effects of NMDA administration in the substantia nigra pars compacta on the striatal dopamine release before and after repetitive exposures to nitrogen narcosis in rats. Undersea & Hyperbaric Medicine, 33, 175–179.
  • Lu, S., Cai, Y., Shen, M., Zhou, Y., & Han, S. (2012). Alerting and orienting of attention without visual awareness. Consciousness and Cognition, 21, 928–938.
  • Maffei, A. (2011). The many forms and functions of long-term plasticity at GABAergic synapses. Neural Plasticity, 2011, 9p.
  • Massaad, C. A., & Klann, E. (2011). Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxidants & Redox Signaling, 14, 2013–2054.
  • Micarelli, A., Jacobsson, H., Larsson, S. A., Jonsson, C., & Pagani, M. (2013). Neurobiological insight into hyperbaric hyperoxia. Acta Physiologica, 209, 69–76.
  • Moss, M. C., & Scholey, A. B. (1996). Oxygen administration enhances memory formation in healthy young adults. Psychopharmacology, 124, 255–260.
  • Moss, M. C., Scholey, A. B., & Wesnes, K. (1998). Oxygen administration selectively enhances cognitive performance in healthy young adults: A placebo-controlled double-blind crossover study. Psychopharmacology, 138, 27–33.
  • Nielson, K. A., Radtke, R. C., & Jensen, R. A. (1996). Arousal-induced modulation of memory storage processes in humans. Neurobiology of Learning and Memory, 66, 133–142.
  • Rota-Bartelink, A. (1999). The diagnostic value of automated flicker threshold perimetry. Current Opinion in Ophthalmology, 10, 135–139.
  • Scholey, A. B., Moss, M. C., Neave, N., & Wesnes, K. (1999). Cognitive performance, hyperoxia, and heart rate following oxygen administration in healthy young adults. Physiology & Behavior, 67, 783–789.
  • Scholey, A. B., Moss, M. C., & Wesnes, K. (1998). Oxygen and cognitive performance: The temporal relationship between hyperoxia and enhanced memory. Psychopharmacology, 140, 123–126.
  • Smith, J. M., & Misiak, H. (1976). Critical flicker frequency (CFF) and psychotropic drugs in normal human subjects—A review. Psychopharmacologia, 47, 175–182.
  • Smith, R. A., & Paton, W. D. (1976). The anesthetic effect of oxygen. Anesthesia and Analgesia, 55, 734–736.
  • Thomas, J. R. (1974). Combined effects of elevated pressures of nitrogen and oxygen on operant performance. Undersea Biomedical Research, 1, 363–370.
  • Turner, J. R., & Carroll, D. (1985). Heart rate and oxygen consumption during mental arithmetic, a video game, and graded exercise: Further evidence of metabolically-exaggerated cardiac adjustments? Psychophysiology, 22, 261–267.
  • Tytla, M. E., Trope, G. E., & Buncic, J. R. (1990). Flicker sensitivity in treated ocular hypertension. Ophthalmology, 97, 36–43.
  • Vallée, N., Rissoe, J. J., & Blatteau, J. E. (2011). Effect of an hyperbaric nitrogen narcotic ambience on arginine and citrulline levels, the precursor and co-product of nitric oxide, in rat striatum. Medical Gas Research, 1, 16.
  • Vallée, N., Rostain, J. C., Boussuges, A., & Risso, J. J. (2009). Comparison of nitrogen narcosis and helium pressure effects on striatal amino acids: A microdialysis study in rats. Neurochemical Research, 34, 835–844.
  • Vallée, N., Rostain, J. C., & Risso, J. J. (2009). How can an inert gas counterbalance a NMDA-induced glutamate release? Journal of Applied Physiology, 107, 1951–1958.
  • Vallée, N., Rostain, J. C., & Risso, J. J. (2010). A pressurized nitrogen counterbalance to cortical glutamatergic pathway stimulation. Neurochemical Research, 35, 718–726.
  • Visser, G. H., Van Hulst, R. A., Wieneke, G. H., & Van Huffelen, A. C. (1996). Transcranial Doppler sonographic measurements of middle cerebral artery flow velocity during hyperbaric oxygen exposures. Undersea & Hyperbaric Medicine, 23, 157–165.
  • Winklewski, P. J., Kot, J., Frydrychowski, A. F., Nuckowska, M. K., & Tkachenko, Y. (2013). Effects of diving and oxygen on autonomic nervous system and cerebral blood flow. Diving and Hyperbaric Medicine, 43, 148–156.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.